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PointsGeneral description
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3 GOOD - generally good work with some shortcomings. Can account for the most important
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If any of the three problems is graded fail (0), the written exam is graded fail (F). Otherwise, the final
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UNIVERSITY
OF SKOVDE

Question 1 (5 p)

The figure shows a simplified dynamic model of a car and its suspension springs. Linear and angular

acceleration equations are obtained as:
{mx = _kl(x - lle) - kz(x + 129)

]9 klll(x—lle)_kzlz(X‘l'lze)
values of mass, moment of inertia, lengths, and stiffness are given as:

m = 625kg, ] = 400kgm?, 1, =2.0m,l, = 1.0 m, k; = k, = 30 kN/m

A NNANNNNANNNNNNANNNNANNNN

1. Obtain the modal natural frequencies of the system.
Propose values (in N.s/m) for dampers ¢, and ¢, parallel to k, and k, respectively such that
damping ratio of the second mode becomes 0.2 [=20%]. Assume proportional damping, with
a = 0. Evaluate the damping ratio of the first mode with these values.

3. Calculate how much amplitude of each mode becomes after ¢t = 5T, (compared to its initial
value), after both modes get excited due to an impulse at t = 0.

T, is the period of the first vibration mode.
[Hint: You may not need to extract the mode shapes/eigenvectors.]
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Question 3 (5 p)

A spring-mass-damper system is initially at rest, but is disturbed by two impulse loads. At time t = 0, a
force of magnitude 1 kN hits the mass and acts for 10 ms. At time t = 2 s, a force of magnitude 2 kN hits
the mass and acts for 10 ms. The system parameters are:

m =10 kg, k1 = 400 N/m ,k2=600N/m, c =100 kg/s.
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Calculate the response x(t) for t = 0.



1.2.3 Overdamped case ({ > 1)

a

1
__v0+(_<+\/(zj)wnxo a2=v0+({+V{2—1)wnx0
T oo 20T~ 1

Eq. 1.41 Eq. 1.42 Eq. 1.43

x(t) = e~Swnt (a1e—(wnJ€2—1 )t 4 g et@nii?-1 )t)

2 Forced Vibration (F(t) # 0)

The total solution x(t) is always the sum of the particular solution, x,,(t) with the frequency of driving force, added to the
homogenous solution, x; (t) with natural frequency of the system, with similar to equations to the free vibration (see section 1)
but NOT the same constants as the free vibration, in other words: x(t) = x,(t) + x,(t).

e The coefficients of the homogenous solution are adjusted such that the total solution satisfies the initial conditions.
e In damped systems, after a while, the response from the initial conditions will die out and the system’s vibration will be
dominated by the particular response (solution).

: s F(t

2.1 Harmonic excitation F(t) = F,cos(wt) or f(t) = —T—(n-)- = f, cos(wt)

_f tor fyis [ = [
(fo = — note that the Sl unit for f is [kg = [sZ])‘

2.1.1 UndampedCase(c=0,{ =0,r #1)

Differential equation: ¥+ w2x = f, cos(wt)

. — __ b
Particular solution: xp(t) = a? cos(wt)

xp(t) xp(t)
Total solution with IC: x(t) = ~%sin w,t + (x /. )cosw t+ 2 cos(wt) (eq. 2.11)
' wn n 0 wi-w? nt ol wi-w? e

Zero initial conditions in this case will lead to beating, with amplitude wzzf‘;z and beat frequency of Wpeq: = W, — W

x(t) = w;{‘;z sin (wnz_w t) sin (wnzi t)(eq. 2.13)

2.1.2 Resonance at undamped case (c = 0,w = w,)or({ = 0,r = 1)

x(t) = A; sinwt + A, cos wt + it sin wt (eq.2.17), A;, A, depend on initial conditions.

2.1.3 Damped Case

Differential equation: ¥+ 2¢wpx + wix = fy cos(wt)
Particular solution (forboth{ < 1and { = 1): X, (t) = X cos(w.t — 6)
V(w2 — 02)? + 2{w. w,)? w? JA =122+ 2’ Wn

and ﬁ’,— = F°2 =5 (i.e. displacement of the spring if F, was applied statically)
wy mwy k

6 = atan2( 2{w,w, w2-—w?)=atan2(2{r, 1-71?%)

2.1.3.1 Resonance (for0 < { < %}
Wpeak
a)_= Tpeak =V1_2{2
n
if g <1
fo 1 F, R

X eak = . = =
Peak T w2 o0 1-¢% 2k J1—¢2 2Kk

2




(m is the total mass of the machine, including the unbalance mass. myis the
unbalanced mass, that rotates with eccentricity e and angular velocity of w,).

Particular solution: X, (t) = X sin(w,t — 6)
Fy/m mg r? wy
X = =e. —. , r=—
V@2 — 0?2 + 2w.w)? ™M A =152 + (2(r)?2 wn
0 = atan2(Q{ww, , w2 —w?)=atan2(2{r , 1-r2)
Xxm r?

— = ——————1s a very small number at low frequencies, at resonance it
emg V(A-1r2)2+(2r)?

becomes almost le and at very high frequencies it becomes 1 (with 8 = ), this means the machine (m — mg) moves

in the opposite direction, to keep the center of total mass in an almost stationary position.

5 Linear Systems, Superposition
1. For a linear homogeneous differential equation, e.g. ¥ + 2{w,x + w2x = 0:
e ifx;(t)and x,(t) are [homogenous] solutions to ¥ + 2{w,% + w2x =0,

then a,x, (t) + a,x,(t) is a [homogenous] solution to ¥ + 2{w,x + wix = 0.

2. For alinear equation of motion, e.g. ¥ + 2{w,% + w2x = f(t) with constant coefficients for ¥, X, x:
e if x,(t) is a particular solution to ¥ + 2{w,x + wZx = f,(t),
e and if x,(t) is a particular solution to ¥ + 2{wp% + w2x = f,(t),

then a;x; (t) + a,x,(t) is a particular solution to ¥ + 2{wp% + w2x = a,f,(t) + a,f,(t).

6 Response to a Periodic Excitation (Fourier Series)
Any periodic function F(t) with period T could be represented by an infinite series of the form:

F(t) = %0- + Z la, cos(nwrt) + by, sin(nwyt)]
n=1

. 2 2 (T 2 (T 2 (T ,
With wp = Tn, aj = Ffo F(t)dt, a, = Ffo F(t) cos(nwrt) dt and b, = Ffo F(t) sin(nwyt) dt. (Eq. 3-20 to
3.23). The superposition principle could be used to calculate the response to the periodic force by calculating the
response to each Fourier term and adding the resulting displacements.

7 Response to impulse excitation, underdamped SDOF:
mi+cx + kx = F8(t — 1)
=>x(t)=F.h(t-1)

h(t—1) = ;—i;;.e"c“’n(t'ﬂ sinwg(t—1) t=1 (eq.3.9)

8 Response to arbitrary excitation

x(t) = m;wde‘z“’nt fot[F(t). enTsin wy(t — )]dt = m—:o: fot[F(t —1).e T sinwyt|dT  (3.13)



then the result of transformation € = L™C(L™*)T = al + BK becomes diagonal if the matrix of eigenvectors of K
are multiplied to it from the right (P) and left (PT) as follows:

PTCP = diag[2¢w;]
Replacing x(t) with x(t) = (L"1)Tq(t) in the differential equation (4.126) and multiplying L™! from left results in:
I§(t) + Cq(t) + Kq(t) = L'BF(t) (similar to eq. 4.128)

Defining q(t) = P r(t), where P is the orthonormal eigenvector matrix of K, [note that this results in x(t) =
@ DT qt) = W HTPr(t) and With S = (L")T P and S™1 = PTLT then x(t) = Sr(t) and r(t) = S™1x(¢)]

replacing q(t) = P r(t) in (eq. 4.128) multiplying PTfrom left to this equation results in:
L, xn F(t) + diag[2qw;] #(t) + Ar(t) = PTL'BF(t) (similar to eq. 4.129)
In above equation:

o PTCP = diag[2{;w;| and A = PTK P = diag(w?)
e The vector PTL"!BF(t) = STBF(t) has elements f;(t) that will be linear combination of forces applied to
the degrees of freedom.
e The modal initial conditions are calculated as r(0) = S~x, and r(0) = S~1x,
e The response for each mode (elements of r(t) ) could be calculated similar to the response of single degree
of freedom systems with f;(t) excitation, these equations are called modal equations:
#(t) + 2Gw7 (1) + 0fry () = £;(t)

(e.g. if it is harmonic excitation by the same equations as in 2.1), . or by eq. 3.13.

The resulting r;(t)s are assembled back in r(t).
e The response in natural coordinate system is obtained by x(t) = Sr(t)
e Since STMS = I,,,.,,, columns of S = [uy, u,, uz, - | are mass-normalized mode shapes of the system.



Physical, Mass Normalized and Modal Spaces with [SI units] (for translational mass systems):

(known as Modal

Equations).

equation®, fori = 1 ton:
¥+ 2007, + wirg = fi(t)

ot |(]I(]§"‘(LU.‘7” =] S1K S

Eq. Name Mass Damping Matrix |Stiffness Matrix Transformation [State Vector State Vector T
Matrix Matrix J
m N.s] . m
Mikglk |7 +C[_]"‘ s Physical N.s N X(t
. [+ e[ (5] sce | Miel [ c[=2 k[ X(0)[m] s
+K [Bl x[m] = BF(t) [N] m m
mykg] .. -
lq[ ;/Z_g]-l-cq-'-l(q Mass <[Ns 17| N 1 T T
—_— = - —_— K = —1 -1 =
m,/kg Normalized =1 |¢ kg. m s] K[kg.m sz] K =@HK?) q(t)[my/kg]| q(&) = LTX(¢) | q(
= L™'BF(¢t) [—z—l
s
my/k
i:[ ‘/Z—E] b diag| 24w, |1 + Ar
s
. 'm,/k .
= ply, 'BF(t) m‘/—é [diag(2¢, w; J| _ T ip
s? Modal 1 \[1] A =P KI ) = PTalt
Moda N|—= - T ) (i) = qir)
Decoupled differential Space i[-] = [;] 52 =prah K(L ‘) P ru.)[m\/k_g] g ‘X(L‘)l\

£ ONLY IF STC S becomes a diagonal matrix [diag(2¢, w; )], e.g. when C [—p—‘f]

= E] M[kg] + /[s] K [%] then STCS = al + pA = [diag(2¢, w,)

Transformation Matrices:

(ingeneral, ST # S°1)

Description Definition Calculation in MATLAB
Normalization of Mass Matrix M=LLT
L[y/kg] | Lower triangular Cholesky’s L = chol (M, ‘lower’);
matrix for M
P= [V1,V2,V3, ] .
_ ' _ =~ | K tilde = (L"(-1))*K*(L" (-
P[] Makes K diagonal Matrix of Ortho;grpma-l- Ellgenvectors of K [P, Lambda] = eig(K tilde’
1 Matrix of Mode Shapes, S= (L HTp
S \/_k_g Moves from Modal Space to S = (L"(-1))" * P
Physical Space Also S71[/kg] = PTLT and : o
° r
1
ST [_] — PT(L—I)
Jke S = (L')\P




14 Euler’s formula
e =cos@ +isinf

15 Quadratic equation

5 —b + Vb? — 4ac
ax“+bx+c=0=>x= a

Reduced form (a = 1):
2 - - _PL P -
X*+px+q=0=>x= zi () q

16 Four Quadrant Arctangent
Function, atan2(y, x)

y

90° &n/2

by

-
—i-

180° 0, 360°
0,2n
270°| 3n/2
y
( atan (;) x>0

atan(%)+7t y=>20x<0

Y ,
atan2(y, x) = 4 atan (x) T y<0;x<0

z >0,x=0
2 Y X =

== <0;x=0
2 y ’

\ undefined y=x=0

In MATLAB and many other software, the correct form
is atan2(y,x), but in Excel, you should enter ATAN2(x;y)
to get the correct answer.



