

School of Business

WRITTEN EXAMINATION

Course Corpo	rate Fina	ance M	anagement		
Sub-course					
Course code NA308G				Cr	edits for written examination 5 hp
Date 2023-11-	-16			Examination time 08.15-13.3	
Examination 1	rognongi	blo Ho	na Mörnar		•
Examination	responsi	DIC IIa	iis morner		
Teachers cond	erned H	ans Mö	örner, Joachim	Samuelsson	
Aid at the exa	m/apper	ndices			
Your calculate	or				
Other					
Instructions			Take a new she	et of paper fo	or each teacher.
			Take a new she	et of paper w	hen starting a new question.
		\boxtimes	Write only on o	one side of the	e paper.
		\boxtimes	Write your nan	ne and person	nal ID No. on all pages you hand in
		\boxtimes	Use page numl	pering.	
		\boxtimes	Don't use a red	l pen.	
			Mark answered	d questions w	ith a cross on the cover sheet.
Grade points					
A	55-60		В	49-54	
С	43-48		D	37-42	
E	30-36		F	0-29	

Examination results should be made public within 18 working days

Good luck!

Question 1

15 marks

- a) Explain what compounding interest is.
- b) Describe what internal rate of return is.
- c) Give an example of a company in financial distress where the management has incentives towards underinvestment.
- d) Name and explain the three forms of market efficiency.
- e) State the Modigliani Miller proposition one without taxes and with taxes and explain its meaning.

Question 2

15 marks

The expected market risk premium is 9.4% and the return on a treasury bill is 4.9% and the variance of the market portfolio is $\sigma^2 = 0.04326$ There is a stock with a covariance between the market portfolio and the stock is $\sigma_{M,S} = 0.0635$

- a) Calculate β of the stock.
- b) Determine the required rate of return on the stock.
- c) Draw in a figure the security market line and mark the market portfolio, the risk-free interest rate and β of the stock.

Question 3

15 marks

- a) When you enter into forward contract there are no money involved but if you want a call option you have to pay for a premium. Why is there such a difference?
- b) You want to buy a call option. The strike price is 75 kronor and you pay 3 kronor for the call. Calculate the profit or loss at different values of the underlying stock at the end of the life of the call option. Then you draw a figure to show the result.
- c) What is an at the money option?

Question 4

15 marks

Executive Chalk is financed solely by common stock and has outstanding 25 million shares with a market price of \$10 a share. It now announces that it intends to issue \$160 million of debt and to use the proceeds to buy back common stock.

- a) How is the market price of the stock affected by the announcement?
- b) How many shares can the company buy back with \$160 million of new debt that is issued?
- c) What is the debt ratio after the change in capital structure?

Formulas

The rate of return of an asset during the period from t to t+1

$$r = \frac{P_{t+1} - P_t}{P_t}$$

Effective interest rate

$$\left(1+\frac{r}{m}\right)^m-1$$

Where m is the number of pay-outs of the interest rate during the period and r is the interest rate.

Euler constant

$$e = 2.718281828$$

Present value and future value discretely compounded

Future value

$$FV = C_0(1+r)^T$$

$$PV = \frac{c_1}{(1+r)^T}$$

Present value $PV = \frac{c_1}{(1+r)^T}$ Net present value for an investment that lasts for one period

$$NPV = -C_0 + \frac{c_1}{1+r}$$

Present value and future value continuous compounded

Continuous paid interest rate

$$FV = C_0 * e^{rT}$$

$$PV = C_T * e^{-rT}$$

Present value

C is the amount

Bond valuation

C = coupon

N= The face value.

T = Time to maturity

r = Risk adjusted discount rate.

$$P = \frac{C}{1+r} + \frac{C}{(1+r)^2} + \dots + \frac{C}{(1+r)^T} + \frac{N}{(1+r)^T}$$

Zero coupon bond

$$P = \frac{N}{(1+r)^T}$$

Perpetuity

The present value of an amount played in perpetuity.

$$PV = \frac{C}{r}$$

If we have a constant growth from next periods amount.

$$PV = \frac{C_1}{r - g}$$

Present value of an annuity.

$$PV = C \left[\frac{1}{r} - \frac{1}{r * (1+r)^T} \right]$$

Present value of an annuity that lasts forever but starts at T years from now.

$$PV = \frac{C}{r} * \frac{1}{1 + r^T}$$

When the annuity increases with g.

$$PV = C_1 \left[\frac{1}{r - g} - \frac{1}{r - g} * \left(\frac{1 + g}{1 + r} \right)^T \right]$$

Statistics

Average value.

$$Mean = \overline{R} = \frac{\left(R_1 + R_2 + R_T\right)}{T}$$

Varians

sample

$$Var = \frac{1}{N-1} [(R_1 - R)^2 + (R_2 - R)^2 + \dots (R_T - R)^2]$$

Covarians

$$Cov(R_A, R_B) = E(R_A - \overline{R}_A) * (R_B - \overline{R}_B)$$

Correlation

$$\rho_{AB} = Corr(R_A, R_B) = \frac{Cov(R_A, R_B)}{\sigma_A * \sigma_B}$$

Stock valuation

Expected return of a stock

$$Expected_Re\ t\ urn = r = \frac{Div_1 + P_1 - P_0}{P_0}$$

$$\textit{Expected_Re} \ \textit{turn} = r = \frac{(P_1 - P_0) * (1 - T_C) + \text{Div}_1 (1 - T_{Div})}{P_0}$$

Stock price

$$p_0 = \frac{Div_1}{r} = \frac{EPS_1}{r}$$
 if Div=EPS

Div = Dividend

P = Price

In case you have a dividend tax.

PV of dividend year
$$1 = \frac{(1-T)Div_1}{(1+r)^T}$$

For a constant growing firm

$$P = \frac{Div_1}{r - g}$$

In case we calculate the investment as side effect and earnings equals dividend.

$$p_0 = \frac{EPS_1}{r} + PVGO$$

In case there is a growth in the earnings per share.

$$p_0 = \frac{EPS_1}{r - g} + PVGO$$

$$\frac{Price\;per\;share}{EPS} = \frac{1}{r} + \frac{PVGO}{EPS}$$

$$\frac{\textit{Price}}{\textit{Earnings}}'\textit{Earnings} = \textit{Price}$$

Plowback ratio=1-payout ratio=1 $-\frac{DIV}{EPS}$

Where does r comes from

$$r = \frac{Div}{P_0} + g$$

Book value of return

$$Book \ value \ of \ return = \frac{Book \ income}{Book \ assets}$$

Earnings per share

$$EPS = \frac{Earings}{Total\ number\ of\ Shares}$$

$$Shares = \frac{Total\ firm\ value}{Price\ per\ share}$$

$$Debt\ ratio = \frac{D}{D+E}$$

Portfolio

Valuation of a portfolio with two risky assets.

The risk as variance

$$\sigma_p^2 = x_a^2\sigma_a^2 + x_b^2\sigma_b^2 + 2x_ax_b\rho_{ab}\sigma_a\sigma_b$$

Expected return

$$E[r_p] = x_a * E[r_a] + x_b * E[r_b]$$

x =the portfolio weight

 σ = the standard deviation

 ρ = the correlation

Risk and cost of capital

Security Market Line

$$Sharpe_Ratio = \frac{Risk_premium}{Std_dev} = \frac{r - r_f}{\sigma}$$

The slope of the Security Market line is:

Slope of SML =
$$\frac{E[r_1] - E[r_2]}{\beta_1 - \beta_2}$$

$$\beta = \frac{\sigma_{S,M}}{\sigma_M^2}$$

Calculate the expected return on an asset on the Security Market Line

$$E[r_p] = r_f + Slope \ of \ SML * \sigma_p$$

Expected risk premium

$$r - r_f = \beta (r_m - r_f)$$

Market return

$$r_m = r_f + Risk_premium$$

Risk premium on individual security

$$E(r_i) - r_f = \frac{Cov(r_i, r_M)}{\sigma_M^2} \left[E(r_M) - r_f \right] = \beta \left[E(r_M) - r_f \right]$$

$$R^2 = \frac{\beta^2 \sigma_M^2}{\sigma^2} = \frac{Explained_var \ i \ ance}{Total_var \ i \ ance}$$

Duration

How long time does it take to get your money back?

Start by calculating the value of the bond

D=Duration

$$P = \frac{C}{1+r} + \frac{C}{(1+r)^2} + \dots + \frac{C}{(1+r)^T} + \frac{N}{(1+r)^T}$$

$$D = \frac{t *_{1} \frac{C}{1+r} + t_{2} * \frac{C}{\left(1+r\right)^{2}} + \dots + t_{t_{T}} \frac{C}{\left(1+r\right)^{T}} + t_{t_{T}} \frac{N}{\left(1+r\right)^{T}}}{P}$$

P is the value of the bond and t is the time.

To calculate the change of the price of a bond when the yield changes. You need the modified duration.

$$D^* = \frac{D}{1+r}$$

Then you can calculate the change of the price of the bond. The price of the bond is called B

$$\Delta B = -BD^*\Delta r$$

Inflation

An approximation

$$r \approx R - i$$

An exact formula

$$r = \frac{R - i}{1 + i}$$

Cost of equity capital and firm value

CAPM

$$E[r_E] = r_f + \beta * (E[r_m] - r_f)$$

$$r_E = r_A + (D/E_L) * (r_A - r_D)$$

$$r_E = r_A + \frac{D}{E} * (1 - T_C) * (r_A - r_D)$$

$$r_{WACC} = r_D * \frac{D}{E+D} + r_{E*} \frac{E}{E+D}$$

$$r_{WACC} = r_D * (1 - T_C) * \frac{D}{E + D} + r_E * \frac{E}{E + D}$$

$$r_{WACC} = \frac{EBIT(1 - T_c)}{E + D}$$

$$V_L = V_u$$

$$V_U = \frac{EBIT * (1 - T_C)}{r_A}$$

$$V_L = V_u + T_C * D$$

$$V_L = \frac{EBIT * (1 - T_C)}{r_A} + T_C * D$$

$$PV_{Tax \, shield} = \frac{T_C * r_D * D}{r_D} = T_C * D$$

Derivatives

Value of a forward contract

$$F = S_0 e^{(r^*T)}$$

Options

The Profit for the party who has bought the call option.

$$Profit = max(S_T - EX, 0) - c$$

The profit for the party who has sold the call option

$$Profit = min(EX - S_T, 0) + c$$

The profit for the party who have bought the put option

$$Profit = max(EX - S_T, 0) - p$$

The profit for the party who have sold the put option. The short position.

$$Profit = min(S_T - EX, 0) + p$$