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Question 1 (5 p)

The mass-spring system below is started at rest, displaced from its equilibrium position
(where x1 = x2 = 0). The initial displacements are x1(0) = 0.1 m and x2(0) = 0.2 m. The
following dynamic parameters are given: k=1 kN/m, m1 =16 kg , m> = 25 kg. Calculate the
natural frequencies and the response (x1 and x; as functions of time).
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Question 2 (5 p)

A building subject to ground motion is modeled as a single-degree of freedom spring-mass
system where the building mass is lumped atop of two beams used to model the walls of the
building in bending. Approximate the building mass by 10° kg. Assume that the ground
motion is modeled as having an amplitude of 150 mm at a frequency of 1 Hz (one cycle per
second). Each beam is modeled as having a length of length of L = 10 m and a bending
stiffness of EI=10° Nm? (where E is Young’s modulus and / is the moment of inertia).

The stiffness associated with the transverse vibration of the tip of a beam is k= 3EI/L>.
Calculate the magnitude of the deflection of the top of the building.

|—> x(?)

m

L, EI L, EI

/ / - > ()

Question 3 (5 p)

Calculate the response of the following system

25() + 6x(£) + 8x(¢) = 5(£) — 48 (t - 2)

subject to the initial displacement x(0) = 0.05 m and the initial velocity x(0)= 2 m/s.
The units are in SI.



General Case:
X+ cx+ kx =F(t Newton’s 2" Law (NSL g :
mi + cx + kx () ewton’s aw (NSL)

n —= F(1)

. _ (44 _ — ; ‘f\ AL
with { = —— ,__k.m,a)n—,/k/m,f(t) F(t)/m N | |
. . _ 7777777
¥+ 20w, x + wix = f(t) Mass normalized form

— x(1)

initial conditions: x(0) = xg and x(0) = v,

Dynamics of rotating systems Shaft and Disk
. N - ;
][kg-m2]9+69[ m]6+k9[N-m]c9=T(t)[N-m] 5
S Torsional |
. ¢ _ ke _ Stiffness
with¢ =2 = [ £ = @) ess |
) . ; Moment
0+ 2lw,0 + w28 = f(t) ‘ of inertia
| e J
1 Free Vibration (F(t) = 0) / ‘\;Ie/".
1.1  Undamped Case (¢ = 0) e
¥4+ wix =0
solution:
Vo
x(t) = a.sin(w,t) + b.cos(w,t) &= b =x,
n
Or
(2, .2 2
x(t) = A.sin(w,t + @) A= m ¢ = atan2(XoWn, Vo) 1
Wy
1.2 Damped Case (With Viscous Damping, ¢ # 0)
C
4 2{wpx + wix =0 (=2W¢0
1.2.1 Underdamped case (0 < ¢ < 1)
solution:
wg = Wp/1— 2
+
x(t) = e~$nt[a.sin(wgt) + b. cos(wyt)] a= M b = x,

o]

Or

3 2 2 _
x(t) = Ae~@nt sin(wgt + ¢) \/“)dxo + (vg + {wnxo) ¢

A= atan2(wgxy, Vo + {wpxg)
Wgq
1.2.2 Critically damped case ({ = 1)
x(t) = (a; + azt)e”“nt a; = X a, = vy + wyxg
Eq. 1.45 Eq. 1.46 Eq. 1.46

tatan2(y, x) indicates the four quadrant inverse tangent (arctan), for example atan2(-1,-1) = -37/4 , while atan(-1/-1) = 7/4,

see page 10.
1



1.2.3 Overdamped case (¢ > 1)

a

1
_ v+ (0= Dt | gy =227 (v (22 — Doy
1 20,72 — 1

Eq. 1.41 Eq. 1.42 Eq. 1.43

x(t) = e—ant (ale—(wnvfz—l )t + aze”‘(wn\/(z‘l )t)

2 Forced Vibration (F(t) # 0)
The total solution x(t) is always the sum of the particular solution, x,,(t) with the frequency of driving force, added to the

homogenous solution, xj, (t) with natural frequency of the system, with similar to equations to the free vibration (see section 1)
but NOT the same constants as the free vibration, in other words: x(t) = x,(t) + x,, ().

e The coefficients of the homogenous solution are adjusted such that the total solution satisfies the initial conditions.
e In damped systems, after a while, the response from the initial conditions will die out and the system’s vibration will be
dominated by the particular response (solution).

F(t)

2.1 Harmonic excitation F(t) = F,cos(wt) or f(t) = —= fo cos(wt)
_Fo it for £ is [N = [
(fo = -~y hote that the Sl unit for f is [kg] = Lz]).
2.1.1 Undamped Case (c=0,{ =0,7r #1)
Differential equation: ¥+ w2x = f, cos(wt)
Particular solution: xp () = wzf_“wz cos(wt)
xp(t) xp(t)
Total solution with IC: x(t) = :—‘;sin wpt + (xo — w%f_‘]wz) cos w,t + w%f_"mz cos(wt) (eq.2.11)
2fo

and beat frequency of Wy = |, — @

Zero initial conditions in this case will lead to beating, with amplitude

2__ 2
Wp—w

wptw

x(t) = w;i‘;z sin (wnz_m t) sin( ” t)(eq. 2.13)

2.1.2 Resonance at undamped case (c = 0,w = wy,)or ({ = 0,r = 1)

x(t) = A; sinwt + A, cos wt + zf_z) tsinwt (eq. 2.17), A4, A, depend on initial conditions.

2.1.3 Damped Case

Differential equation: ¥+ 20w, x + wix = f, cos(wt)
Particular solution: xp(t) = X cos(w.t — 6)
X = fO = i()_ ! = i
V(@2 — 0?2)? + 2{w. w,)? w? JA =122+ )2 Wy
and f—‘; = iz =l (i.e. displacement of the spring if Fy was applied statically)
wy  Mmo; k

0 = atan2( 2{w,w, 02— w?)=atan2(2¢r, 1-—12)

1
2.1.3.1 Resonance (for0 < { < ﬁ)

w
peak _ T'peak — (—1 — 252
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3 Base Excitation

3.1 Harmonic Excitation REC
mi+c(t—y)+k(x—y)=0, y=7Ysin(wt) from NSL "

Standard form:

¥+ 2{wpX + w2x = 2{w,0Y X cos(wt) + wiY X sin(wt)

=

Particular solution: [ Base

X, (t) = X .sin(w.t — 1)

i k? + (cw)?
X=Y (k —mw?)? + (cw)?

Or

_ 1+ (2¢r)? _w
X‘Kja—ﬂﬁ+@aﬁ’ "o,

Y = atan2[mcw® , k(k—mo?) + (c.w)?] = atan2[2{r® , (1-1r2)+ (20r)?]

2
l [ ’(1 i:)(zzf(g)( P is called displacement transmissibility, it is around 1 at low frequencies, then it reaches to its

. 1 . . .
maximum (resonance) very close to r = 1, to a value close to T This ratio reduces and reaches 0 as the r increases

(i.e. when base vibration frequency increases to values much higher than the natural frequency, the mass remains
almost still. In other words, you cannot oscillate an object at frequencies much higher than the natural frequency

that is created between that object and its base). (Fig. 2.14)

3.1.1 Transmitted Force
F) =k(x—y)+c(x—y) = —mi = —mw?X.sin(w.t — )

Y 72)2 + (2.2

B 1+(2.8.r)2 . . e s . . L .
' = il ’——(1—7‘2)2+(2.(.r)2 is called force transmissibility ratio (FTR). This ratio is very small at low frequencies

(compared to the natural frequency). It has a local peak very close to r = 1, approaching % With non-zero

Iilz 2 élz(k.rz)x\](l_l'i"(z[.r)z

damping ratio, FTR keeps increasing as the r ratio increases. (Fig. 2.15 in the book).

4 Rotating Unbalance

NSL: m¥ + cx + kx = mpew? sin(w, t) = F, sin(w, t)



(m is the total mass of the machine, including the unbalance mass. m,is the
unbalanced mass, that rotates with eccentricity e and angular velocity of w,.).
Particular solution: X, (t) = X sin(w,t — 0)

3 Fy/m _ Mo F2 ;
J@E=0d)2 + Qlaoyw)? ™ JA—1rDZ+ (20?2 @y

6 = atan2(2{w, w,, , w32—w?) =atan2(2{r , 1-—12)

Xm 72 ) . .
= ———————1s a very small number at low frequencies, at resonance it

emy  JA-r22+(201)?

becomes almostzizand at very high frequencies it becomes 1 (with 8 = ), this means the machine (m — mg) moves
in the opposite direction, to keep the center of total mass in an almost stationary position.

5 Linear Systems, Superposition
1. Fora linear homogeneous differential equation, e.g. ¥ + 2{w,% + w2x = 0:
e ifx,(t) and x,(t) are [homogenous] solutions to ¥ + 2{w,% + w?x = 0,

then a,x, (t) + a,x,(t) is a [nhomogenous] solution to ¥ + 2{w, % + wZx = 0.

2. For a linear equation of motion, e.g. ¥ + 2{w,% + wZx = f(t) with constant coefficients for ¥, %, x:
o if x;(t) is a particular solution to & + 2{w,% + wZx = f(b),
e andif x,(¢) is a particular solution to ¥ + 2{w, X + wix = f,(b),

then a, x4 (t) + a,x,(t) is a particular solution to ¥ + 2{w, % + w2x = a, f5(t) + a, f,(t).

6 Response to a Periodic Excitation (Fourier Series)
Any periodic function F(t) with period T could be represented by an infinite series of the form:

a
F(t) = 70 + z la, cos(nwrt) + by, sin(nw;t)]
n=1

. 21 2 T 2 T 2 (T .
With wr =5 ag = Ffo F(t)dt, a, = ;fo F(t) cos(nwyt) dt and b, = ;fo F(t) sin(nwyt) dt. (Eq. 3-20 to
3.23). The superposition principle could be used to calculate the response to the periodic force by calculating the
response to each Fourier term and adding the resulting displacements.

7 Response to impulse excitation, underdamped SDOF:
mi + cx + kx = F§(t— 1)
= x(t) =F.h(t—1)

h(t —1) = med. e Son(Dsinwa(t—1) t=T1 (eq.3.9)

8 Response to arbitrary excitation
L p—tont fot[lb"(r).ez“’nT sin md(t—r)]dr:% fot[F(t—r).e"Z"’nTsin wdr]dr (3.13)

mwgqg mw

x(t) =



9 Modal Analysis

(In this section, boldface is used to show matrices).

9.1 Modal Analysis of undamped free response
Mx(t) + Kx(t) =0

9.1.1 General mass matrix, by Cholesky decomposition
Mx(t) + Kx(t) =0 (eq. 4.54)

Calculate lower triangular matrix L such that M = LLT (see the footnote?)

Calculate L1

Calculate the mass normalized stiffness matrix K = L™*K(L™)T

Calculate the symmetric eigenvalue problem for K to get a)iz and Orthonormal eigenvectors v;. Build P with
these orthonormal eigenvectors:

P whpe

P=[v,v,,v3.. ]

[since K is a symmetric matrix its eigenvectors will be orthogonal to each other, i.e. v{ v, = 0, But vy, V5, ...V
should also be normalized, i.e. their norm ||v;||, square root of sum of square of elements, should be 1. You can
ensure this by updating the eigenvectors as L — vi/llv;ll

Since the columns of P are orthonormal eigenvectors of K, then PTP = 1,,,.,, (n X n unity matrix) and PTKP = A .

and A is a diagonal matrix with square of natural frequencies for each modes shape as its main diagonal:

[w? 0 T
0 w?

A = diag(w?) = R

2
i w4

5. CalculateS = (LHTP andS~1 = PTLT
6. Calculate the modal initial condition vectors, r(0) = S™'x,,(0) = S™1x,
7. Substitute r(0) and 1(0) into equations (4.66) and (4.67) to get the solution in modal coordinate r(t):

.fwizri?o + 7"1',02
@)=t ———
L
8. Multiply r(t) by S to get the solution x(t) = Sr(t)
Note that S is the matrix of mode shapes and P is the matrix of eigenvectors of K.

sin(wit + atan?2 (wirilo P fﬂi,O) ) ,i=1,2,..

9.2 Modal Analysis of the Forced Response, with general mass matrix and damping
Mx(t) + Cx(t) + Kx(t) = BF(t) (eq. 4.126)

BF(t) is used to shape application of various force functions on degrees of freedom.

1. Calculate lower triangular matrix L such that M = LLT. For diagonal mass matrix see the footnote in the
previous page.

If the damping matrix has specific conditions, e.g. it is a proportional to mass and stiffness matrices as:

C=aM+ BK

1 1
2 If you can easily calculate Mz, (e.g. when you have a diagonal M matrix), then you can replace L by Mz in the

remining of equations and L™ = M~1/2, With a diagonal M matrix directly take the square root of diagonal

1
elements to calculate L = Mz. You can not do so if M was not a diagonal matrix.

5



The result of transformation € = L™*C(L™1)T = al + BK becomes diagonal if the matrix of eigenvectors of K are
multiplied to it from the right (P) and left (PT) as follows:

PTCP = diag[2¢;w;]
Replacing x(t) with x(¢) = (L71)Tq(¢) in the differential equation (4.126) and multiplying L™ from left results in:
14(t) + Cq(@®) + Kq(t) = L™*BF(t) (similar to eq. 4.128)

Defining q(¢) = P r(t), where P is the orthonormal eigenvector matrix of K, [note that this results in x(¢) =
LD q(t) = W HTPr(t) and WithS = (LT)T P and S™1 = PTLT then x(t) = Sr(t) and r(t) = S~1x(¢)]

replacing q(t) = P r(t) in (eq. 4.128) multiplying PTfrom left to this equation results in:
Luxn B'(8) + diag[2gw;] £(2) + Ar(t) = PTL™'BF(t) (similar to eq. 4.129)
In above equation:

o PTCP = diag[2(;w;] and A = PTK P = diag(w?)

e The vector PTL™1BF(¢) has elements f;(t) that will be linear combination of forces applied to the degrees
of freedom.

e The modal initial conditions are calculated as r(0) = S~x, and 1(0) = S™1x,

e The response for each mode (elements of r(t) ) could be calculated similar to the response of single degree
of freedom systems with f;(t) excitation:

#5(6) + 2G07,(1) + ofri(®) = f(®)
(e.g. if it is harmonic excitation by the same equations as in 2.1), . or by eq. 3.13.

The resulting r;(t)s are assembled back in r(t).
e The response in natural coordinate system is obtained by x(t) = S r(t)
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10  Power/Logarithm
e*=bea=In)
11 Matrix Identities
If k is a scalar then kA = Ak
Matrix to vector multiplication:
_[a b _ e

a=[g glv=lg

ae + bg]

= Av :[ce+dg

Matrix to matrix multiplication (for 2x2 matrices):

o[t -y 1

[ae +bg af + bh]

+ 4B = ce+dg cf+dh

Compatibility: For matrix multiplication to be
defined: ApxnBnxp = Cmxp

Associativity: (AB)C = A(BC)
Distributivity: A(B+ C) = AB + AC

Identity Matrix: Al = A and IA = A.

Not Commutative: in general: AB # BA
Determinant of multiplication:
det(AB) = det(A) det(B)

Transpose of a 2x2 matrix:
_Ja b T_[a C
a=[l J=am=[y 4l
Transpose of product:(AB)” = BTAT,
Determinant and Inverse of a 2x2 matrix:

a b

A= [C d] = det(A) = ad — bc

Inverse of a 2x2 matrix:
a1 [ d —b]
det(A)l—c a

12 Euler’s formula

e = cos@ +isin@
13 Trigonometric ldentities
Pythagorean identity: sin?0 + cos?0 =1

Angle Sum:
sin(a + 8) = sina cosfB + cosasinf
sin(a — 8) = sinacosB — cosasinf
cos(a+ B) = cosacos P — sinasin 3
cos(a — B) = cosacosf + sina sinf

tana + tan 3

t + N e————————
an(a £ ) 1+tanatanf

Product-to-sum
cos(6 — @) + cos(6 + @)

cosBcosp = >
) ] cos(8 — @) — cos(B + )
sin@sing = 5
) sin(8 + @) + sin(6 — @)
sinBcos@ = 5
) sin(6 + @) — sin(6 — @)
cosBsing = 5

Sum-to-product

0+ 0+
sineisincp:ZSin< _(p)cos< (p)

2 2
Bty B-¢
Cose—coscp=—251n( )sm( )
2 2
0+ 6 —
cos 8 +cos = 2 cos ( qo) cos( qo)
2 2
sin(0 +
cosBcos @

14 Quadratic equation

i b+ Vb2 —4ac
ax“+bx+c=0>2x=—"——
2a
Reduced form (a = 1):
x2+px+q=0=>x:—g+ (B)Z—q
27 \2



15 Four Quadrant Arctangent

Function, atan2(y, x)
))
90° Am/2

atan2(y, x) =<

270°| 3n/2

atan(%) x>0
atan(%)+n y=20;x<0

atan(%)—n y<0;x<0

= >0;,x=0
2 yohE=
s

3 y<0;x=0

undefined y=x=0

In MATLAB and many other software, the correct
form is atan2(y,x), but in Excel, you should enter
ATAN2(x;y) to get the correct answer.
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