School of Health Sciences ## WRITTEN EXAMINATION | Course Genetics | | | |---|----------------------------|---| | Examination Salster | ntame | en | | Course code BM1360 | 3 | Credits for written examination 4 hp | | Date 20250609 | | Examination time 08.15-12:30 | | | | | | Examination respons | ible M a | aria Araceli Diaz | | Teachers concerned N | /Iaria | Araceli Diaz, Johan Norden | | Aid at the exam/appe | ndices | Calculator | | | | | | Other | | | | | | | | Instructions | | Take a new sheet of paper for each teacher. | | mstructions | | Take a new sheet of paper when starting a new question. | | | \boxtimes | Write only on one side of the paper. | | | \boxtimes | Write your name and personal ID No. on all pages you hand in. | | | \boxtimes | Use page numbering. | | | \boxtimes | Don't use a red pen. | | | \boxtimes | Mark answered questions with a cross on the cover sheet. | | Grade points | | | | For D: 50% correct of For C: 50% correct of For B: 50% correct of | n each
n each
n each | learning objective (6+6+4), 50% of total points, 16p. learning objective, 60% of total points, 19p. learning objective, 70% of total points, 22p. learning objective, 80% of total points, 25p. learning objective, 90% of total points, 28p. | Examination results should be made public within 18 working days Good luck! | Code: | | | |-------|--|--| | | | | ## Written exam: Genetics BM136G VT25, 4 hp, 20250609 This exam has 3 different parts, and you need to pass all of them to pass the exam (minimum 50% correct per part). For E: 50% correct on each learning objective (6+6+4), 50% of total points, 16p. For D: 50% correct on each learning objective, 60% of total points, 19p. For C: 50% correct on each learning objective, 70% of total points, 22p. For B: 50% correct on each learning objective, 80% of total points, 25p. For A: 50% correct on each learning objective, 90% of total points, 28p. You can answer multiple choice questions directly on this paper. Other questions on separate sheets of paper. | Le
pe | earning objective 1: Describe principles for inheritance and edigrees, and make calculations on these (12 p) | JN | |----------|--|----| | 1- | What is the most likely mode of inheritance in these pedigrees? | 1p | | | | | | | A. autosomal recessive B. autosomal dominant C. X-linked recessive D. X-linked dominant | | | 2- | What is the most likely mode of inheritance in these pedigrees? | 1p | | | | | | | | | | | | | | | | | | | В.
С. | autosomal recessive
autosomal dominant
X-linked
Y-linked | | |----|-----------------------------------|---|----| | 3- | disorder. T | has a history of cystic fibrosis, an autosomal recessive he parents are both carriers (heterozygous) for the disease. e probability that their child will be affected by cystic fibrosis? | 1р | | | A. | 0% | | | | | 25% | | | | | 50% | | | | D. | 75% | | | 4- | Which of t | ne following is true about X-linked recessive disorders? | 1p | | | A. | They are more common in females | | | | B. | They are passed from father to son | | | | C. | They are more common in males | | | | D. | They cannot be inherited | | | 5- | marries a | s a carrier for hemophilia, an X-linked recessive disorder, and man who is unaffected. What is the probability that their son ected by hemophilia? | 1p | | | Α. | 0% | | | | | 25% | | | | | 50% | 1 | | | | 100% | | | 6- | is caused in life. His family has | 47, has just been diagnosed with Huntington's disease, which by a rare dominant allele. The disease is not shown until late daughter, age 25, has a 2-year-old son. No one else in the the disease. What is the probability that the daughter will e disease later in life? | 1p | | 1 | | | | | netic | s BM136G ex | am, VT-25 | | Code: | | | |-------|--|--|--|---|--|----| | | A.
B.
C.
D.
E. | 0 %
25 %
50 %
75 %
100 % | | | | | | 7- | chromosor | nes in a chro
ne would be
Sequence
A mix of s
Sequence | closely examine the process of all for sequences sequences. | other or from the fa
mother and fathe
irandparents | scle cells, that | 1р | | 8- | What is the type O child A. B. C. D. | e likelihood od? It is impossik 25% if both p 50% if both p 25% if only t | nans exhibits cod
of a type A father
ble.
parents are heteroz
parents are heteroz
the father is heteroz
the mother is hetero | and a type B mo
cygous
cygous
cygous | | 1p | | 9- | allele (G) cayellow-color monohybri and 1/2 are genotypes A. B. C. D. | auses green-
ored pods.
id cross in w | two alleles for the
-colored pods, and
You are prese
hich approximate
ch of the following | I the recessive al
nted with the
y 1/2 of the proge | lele (g) causes
results of a
eny are yellow, | 1p | | | | | | | | | | 10- | A pea plant is heterozygous at the independent loci for flower color (Pp) and seed color (Yy). What types of gametes can it produce? | | | |-----|--|---|----| | | A.
B.
C.
D.
E. | two gamete types: pp and PP two gamete types: pY and Py four gamete types: pY , py , PY , and Py four gamete types: pP , Yy , pY , and Py one gamete type: $PpYy$ | | | 11- | has galactos
grandmother
children, non | rtha are contemplating having children, but John's brother
emia (a rare autosomal recessive disease) and Martha's
also had galactosemia. Martha has a sister who has three
e of whom have galactosemia. What is the probability that
rtha's first child will have galactosemia? | 1p | | | A.
B.
C.
D.
E. | 0
1/4
1/8
1/12
1/16 | | | 12- | gives blue le
You are mak
heterozygous | dominant A allele inhibits leaf color. The dominant E allele saves, whereas the recessive e allele gives green leaves. ing a dihybrid cross of the maize plants by crossing two s plants with each other. ution of the different phenotypes will you see in the F1 | 1p | | | A.
B.
C.
D.
E. | 9 blue; 4 green; 3 no color
9 green; 4 blue; 3 no color
9 no color; 4 blue; 3 green
12 no color; 3 blue; 1 green
12 blue; 3 green; 1 no color | | | ~ I | | | |------------|--|--| | Code: | | | | | | | | lin | arning objective 2: Describe mitosis, meiosis, recombination and kage analysis, their produced effects on the next generation, and ake calculations on these (12 p) | MADC | |-----|--|------| | 13- | Which of the following statements correctly describes the difference between the leading and the lagging strands of DNA in DNA replication? | 1p | | | A. The leading strand is synthesized in the same direction as the
movement of the replication fork, and the lagging strand is
synthesized in the opposite direction. | 9 | | | B. The leading strand is synthesized by adding nucleotides to the
3' end of the growing strand, and the lagging strand is
synthesized by adding nucleotides to the 5' end. | | | | C. The lagging strand is synthesized continuously, whereas the
leading strand is synthesized in short fragments that are
ultimately stitched together. | | | | D. The leading strand is synthesized at twice the rate of the
lagging strand. | | | | | | | 14- | The mitotic spindle plays a critical role in which of the following processes? | 1p | | | A. Separation of sister chromatids | | | | B. Splitting of the cell (cytokinesis) following mitosis | | | | C. Dissolving the nuclear membrane | | | | D. Triggering condensation of chromosomes | | | 15- | Which of the following statements describes a characteristic feature of metaphase? | 1p | | | A. Separation of sister chromatids | | | | B. Cytokinesis | | | | C. Alignment of chromosomes on the equator of the cell | | | | D. Separation of the centromeres | | | | | | | | | | | Code: | | | |-------|--|--| | | | | | 16- | Which of the following chromosome number | | of a species that has a | 1р | |-----|--|--|---|----| | | B. The specie
C. Each diplo | es is diploid and has 32
es has 16 sets of chromed
d cell has eight homolo
from this species has fo | osomes per cell.
gous pairs of chromosomes. | | | 17- | mitosis? A. Chromoso B. Synapsis C. Alignment | g processes occurs in
ome replication
of chromosomes
of chromosomes at the
tion of chromosomes | | 1р | | 18- | | | to ab/ab, what percentage of
are 10 map units apart? | 1p | | 19- | chromosome as a heterozygous for k | a locus with alleles | nt is located on the same H and h. An organism ed with an organism with iles are produced: | 2p | | | | Genotype | Number of progeny | | | | | GH/gh | 12 | | | | | Gh/gh | 80 | | | | | gH/gh | 85 | 1 | | 1 | | | | 1 | | | | gh/gh | 20 | | | | | notype of the heterozyg | Table 1 | | | | b) What is the ma | notype of the heterozyg | ous parent? (1p) | | | Code: | | | |-------|--|--| | | | | | 20- | Which of the following observations would most strongly suggest that two genes are linked? | 1p | |-----|---|----| | | A. The genes exhibit independent assortment in a dihybrid cross. B. The recombination frequency between the genes is approximately 50%. C. The recombination frequency between the genes is significantly less than 50%. D. All possible phenotypic combinations appear with equal frequency in a testcross. | | | 21- | Two different pure-breeding lines of tomatoes were crossed. The F1 progeny were phenotypically wild-type and heterozygous for three recessive traits: dwarf (d), yellow fruit (y), and narrow leaves (n). A testcross was performed by crossing the F1 (DdYyNn) with a homozygous triple-recessive plant (ddyynn). The resulting 10,000 progeny is shown below: | 3p | | | Phenotype Count DyN 3050 dYn 2980 dYN 970 DYn 1010 Dyn 700 dYN 690 DYN 80 dyn 60 Total 10,000 | | | | a) What were the genotypes for the parental true-breeding lines? (1p) b) Determine the correct gene order. (1p) c) Draw a linkage map for the three genes, including map distances (in map units). (1p) | | | | earning objective 3: Explain the main concept as well as the use of mpler models in population genetics (8 p) | MADC | |-----|---|------| | 22- | If the frequency of A allele in a population is 0,2, the frequency of the homozygote genotype aa is: | 1р | | | A. 0.32 | | | | B. 0.16 | | | | C. 0.64 | | | | D. 0.8 | | | | | | | Code: | | | |-------|--|--| | 23- | Allele frequencies for the ABO blood type among North Americans ar estimated at f(IA) = 0.3; f(IB) = 0.02; f(i) = 0.68. Assuming Hardy Weinberg equilibrium conditions for this locus, what is the expecte frequency of blood type AB? | | | | | |-----|--|--|----|--|--| | | A. | 0.016 | | | | | | B. | 0.012 | | | | | | C. | 1.0 | | | | | | D. | 0.006 | | | | | 24- | Briefly | / explain: | 3р | | | | | a) | the conditions for assuming a Hardy-Weinberg Equilibrium (1p) | | | | | | b) | Genetic variation and sources of genetic variation (1p) | | | | | | c) | Natural selection (1p) | | | | | 25- | Given
150 G | a population of wildflowers in Oregon: 500 G1G1 (Purple flowers), 2G2 (Yellow flowers) and 50 G1G2 (Lavender flowers) | 2p | | | | | Answer the following: | | | | | | | a) | Calculate the genotype frequencies for purple, yellow, and lavender flowers and the number of allele copies of G1 and G2. (1p) | | | | | | b) | Using the allele frequencies, calculate the expected genotype frequencies under Hardy-Weinberg equilibrium and the expected number of individuals for each genotype. (1p) | | | | | | c) | Is the population in Hardy-Weinberg equilibrium? Justify your answer with calculations. (1p) | | | | | | d) | Pollen from a nearby plantation introduced 120 new yellow-flowered plants (genotype G2G2) into the population. What evolutionary mechanism does this represent, and how might it affect the population? (1p) | | | |