

WRITTEN EXAMINATION

Course Machine Elements

Examination: Sub-course

Course code : MT507G

Credits for written examination 5 hp

Date: 2026-01-08

Examination time 14:15 - 18:30

Examination responsible : Tobias Andersson

Teachers concerned: Tobias Andersson, Mahdi Eynian and Andreas Andersson Lassila

Aid at the exam/appendices

- Schmid, SR, Hamrock, BJ and Jacobson, BO (2014) Fundamentals of Machine Elements. CRC Press, Boca Raton FL, USA. (Original hard copy, or chapter copies)
- Sundström, B. (red.) . Handbook of Solid Mechanics. Stockholm: Department of Solid Mechanics, KTH. Optional edition
- Formula sheet

Other

- Sundström, B. . Handbok och formelsamling i hållfasthetsslära. Tekniska högskolan Stockholm: Institution för hållfasthetsslära. Valfri upplaga
- An approved calculator according to "Allmänna riktlinjer gällande utbildning på Institutionen för ingenjörsvetenskap": (A detailed list is provided to exam invigilators.)
 - Casio Teknikräknare FX-82 all variants
 - Texas Instruments TI-30 all variants o
 - Texas Instruments TI-82, TI-83, TI-84
 - Casio FX-7400GII, FX-9750GII
- An English-Swedish-English ordbook or English-Spanish-English dictionary.

No added notes are allowed in the texts used during the examination.

Instructions

- Take a new sheet of paper when starting a new question.
- Write only on one side of the paper.
- Write your name and personal ID No. on all pages you hand in.
- Use page numbering.
- Don't use a red pen.
- Mark answered questions with a cross on the cover sheet.

**UNIVERSITY
OF SKÖVDE****Problem 1 (Springs/ Shrink fit)**

An electric motor rotor is mounted on a hollow steel shaft using a shrink fit. The geometry and material/interface data are as follows:

Geometry

- Shaft inner diameter: 40 mm
- Shaft outer diameter (and rotor hub inner diameter, nominal): 56 mm
- Rotor outer diameter: 150 mm
- Axial interface length: 125 mm

Interface

- Coefficient of friction at the shaft–hub interface: $\mu = 0.1$

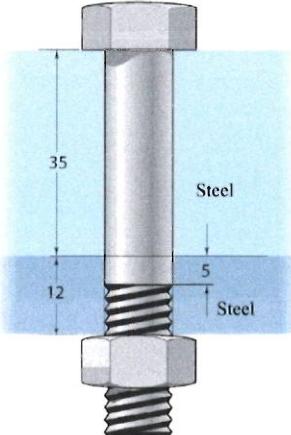
Material:

- Rotor: Magnetic Steel, $E = 145 \text{ GPa}$, $\nu = 0.3$.
- Shaft: 1045 Steel, $E = 207 \text{ GPa}$, $\nu = 0.3$

Operating condition

- Transmitted torque: 900 N·m
- Required safety factor (on torque) against slip: 1.6
- Low-speed operation (centrifugal effects neglected)

- Determine the required radial interference (in μm) between shaft and rotor hub to transmit the required torque with the given safety factor.
- Determine the temperature difference between rotor (heated) and shaft (cooled) required for assembly such that, during assembly, a radial clearance of 20 μm exists. At room temperature, the shaft outer radius must exceed the rotor inner radius by the interference calculated in part (a).
- Calculate the maximum compressive hoop stress in the shaft after assembly.


(5p)

Problem 2 (Threaded joints)

In the assembly shown below (with dimensions in mm), with a steel M8×1.25 bolt, preloaded to 90% of its proof load,

- Calculate the stiffness of the bolt and the joint members and the dimensionless joint parameter (c_k).
- Select a suitable grade (e.g. 4.6, 5.8, 8.8, ...) for the bolt so that the **assembly** can support an **external tensile load** of 10 kN with a safety factor larger or equal to 2.0.
- What will be the safety factor guarding against separation of the members for the 10 kN external load?
- draw the corresponding bolt diagram.

(5p)

