

Not Passed < 10p

School of Engineering Science

WRITTEN EXAMINATION

Course: Material Process	ng Technology	
Sub-course: Written Exam	nination	
Course code: MT508G	(Credits for written examination: 2 ECTS
Date: 2025-01-17	1	Examination time: 08.15-12.30
Examination responsible	Dr Lennart Y. Ljungberg (Ass	soc. Professor)
Teachers concerned: Mal	di Eynian	
The answers to the quest	ons can sometimes be found i	n the related areas in the course book or the
handouts given in the bra	ckets after each question.	
Note: L.Y. Ljungberg and	M. Eynian can be contacted b	y telephone through the examination
invigilators.		
Instructions:	Take a new sheet of paper	for each teacher.
\boxtimes	Take a new sheet of paper	when starting a new question.
\boxtimes	Write only on one side of t	he paper.
\boxtimes	Write your name and pers	onal ID No. on all pages you hand in.
\boxtimes	Use page numbering.	
\boxtimes	Don't use a red pen.	
\boxtimes	Mark answered questions	with a cross on the cover sheet.
Grade points:		
Maximum: 18p		
Passed (G): 10 p or more		

Examination results should be made public within 18 working days!

Good luck!

Part A. Quantitative problems. Motivate and show your calculations. 3 p per task! See the formulas in the end of this examination!

- 1. Let n = 0.5 in the Taylor equation for tool wear for cutting of steel at a depth of cut of 4 mm and feed rate of 0.25 mm. Compare the volume of material that can be removed before the end of tool life in two cases,
 - Case 1, the cutting speed is 250 m/min
 - Case 2, the cutting speed is 350 m/min

(S3)

2. Calculate the suitable cutting speed in m/min, such that mean temperature increase is limited to 800° C when cutting Inconel with uncut chip-thickness t_0 of 0.050 mm. Use the mechanical and thermal properties listed in the table below:

	Inconel	
Flow stress Y_f [MPa]	500	
Thermal diffusivity $K\left[\frac{m^2}{s}\right]$	3.20×10^{-6}	
Volumetric specific heat ρc , $\left[\frac{N}{m^2 \circ C}\right]$	3.56×10^{6}	

Note: make sure that all variables are used with correct and compatible SI units in the relevant equation. (S3)

Part B. Qualitative problems. Motivate your answers and if possible draw figures, even when this is not required! 3 p per task!

- 2. Give 3 reasons when machining operations may be required, and provide an example for each reason. (S1)
- 3. Tool life can be almost infinite at low cutting speeds and almost zero at too high cutting speeds. Discuss and give 3 reasons how to select a suitable cutting speed. Explain. (S1)
- 4. Explain the consequences of allowing temperatures to rise to high levels in the <u>work</u> <u>part</u> during cutting.

- 5. Various machining methods.
 - a) Explain the main principles of Chemical milling. (Ch 27.2)
 - b) Draw a simple sketch showing the principles for an Electron Beam Machining process.
 - c) Explain and describe two types of chips after machining.
- 6. Tools.

Draw a simple picture of a used cutting tool. Show and explain three wear problems related to the tool. (Handout no 4)

Appendix: Formulas in material processing

Taylor tool life equation

$$VT^n = C$$

Mean temperature increase considering workpiece material properties:

$$T = 3.8 \frac{Y_f}{\rho c} \sqrt[3]{\frac{V t_0}{K}}$$

Mean temperature vs. feed and cutting speed

 $T_{mean} \propto V^a f^b$

Cutting Tool Material	а	b
Tungsten-Carbide	0.2	0.125
High-Speed Steel	0.5	0.375

Figure related to question B3:

