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Question 1 (5 p)

The mass-spring system below is started at its static equilibrium position x1(0) = x2(0) =0
with initial velocities %, (0) = %,(0) =1 m/s . The following dynamic parameters are given:

k=2kN/m, ¢ =50 kg/s, m =100 kg

Calculate the response (x1 and x2 as functions of time).

] 4m
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Question 2 (5 p)

A foot pedal for a musical instrument is modeled according to the figure. The applied load
F(t) is a harmonic force with an amplitude of 60 N and a driving frequency of 1 Hz.

The mass of the lever is negligible. The dynamic parameters of the model are:
k=2500 N/m, ¢ =50 kg/s, m =40 kg
Compute the steady state response, described as the vertical deflection of the mass x(7).

You can assume that the angle that the pedal rotates around A is small. Hence, points B, C
and D are only moving in the vertical direction.

L = 80 mm )
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Question 3 (5 p)

A mass-spring system starts at rest and x(0) = 0 when a force F(f) is applied. The force decays
exponentially over time, with the initial magnitude Fo and the decay rate constant y.

. 2
The dynamic parameters of the system are m, k andc = 5 Nkm .

Calculate the response x(¢). How large is the response after a long time?

F(2)
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Some integral from the table below may be useful.

Integral table

fsin( ax)dx = —3 cos(ax)
1
j cos(ax)dx = = sin( ax)
fx <sin(ax)dx = % (sin(ax) — ax - cos(ax))

1
x - cos(ax)dx = = (cos(ax) + ax - sin( ax))

a? + b2

ax

e . cos(bx)dx = ———(a - cos(bx) + b - sin( bx))

feax - sin(bx)dx = . (a - sin(bx) — b - cos(bx))
f a® + b?



General Case:
mi + cx + kx = F(t)

with § = o, w, = Jk/m, f(t) = F(t)/m g A “ [‘—

¥+ 2{w,x + wix = f(t)

Newton’s 2" Law (NSL)

Mass normalized form
initial conditions: x(0) = x, and x(0) = v,

Dynamics of rotating systems Shaft and Disk

Jlkg-m?] 6 +cp [N ]9+k3[N m]6 = T(t)[N-m]

Torsional
with{ = 2w, = [ () = 7(t)J Stifiness
\[— J ko
Moment
0+ 2w, 0 + w26 = f(t) of inertia
oy
1 Free Vibration (F(t) S
1.1 Undamped Case (¢ = 0)
¥+ wix =
solution:
Vo
x(t) = a.sin(w,t) + b. cos(w,t) g=— b =x,
n
Or
2,.2 2
x(t) = A.sin(w,,t + ¢) A= Xo®n + Vg ¢ = atan2(Xowy,, Vo) 1
(’UTL
1.2 Damped Case (With Viscous Damping, ¢ # 0)
c

1.2.1 Underdamped case (0 < { < 1)
solution:

Wg = Wpy/1— g

Vo + (wyx
x(t) = e~$“nt[a.sin(wgyt) + b. cos(wyt)] = O—ini b =x,
d
Or
2.2 2 2 _
— —Jwnt &; \/wdxo + (UO + {a)n'XO) ¢ =
) =g -Sle5 + 4 A= atan2(wgxy, Vo + {wpxy)
Wq
1.2.2 Critically damped case ({ = 1)

x(t) = (a1 + ayt)e “nt

a1:x0

a, = Vg + WnXg

Eq. 1.45

Eq. 1.46

Eq. 1.46

Tatan2(y, x) indicates the four quadrant inverse tangent (arctan), for example atan2(-1,-1) =

see page 10.

1

-3m/4 , while atan(-1/-1) = n/4,




1.2.3 Overdamped case ({ > 1)

a

oyt (<4 + T Do | a =20t EFAT Do

x(t) = e~Swnt (ale—(wngZ—l ) 4 g et@ndTP-1 )t) _ y - —
20,/ — 1 Sk

Eq. 1.41 Eq. 1.42 Eq. 143

2 Forced Vibration (F(t) # 0)

The total solution x(t) is always the sum of the particular solution, x,, (t) with the frequency of driving force, added to the
homogenous solution, x;, (t) with natural frequency of the system, with similar to equations to the free vibration (see section 1)
but NOT the same constants as the free vibration, in other words: x(t) = x,(t) + x, (t).

e The coefficients of the homogenous solution are adjusted such that the total solution satisfies the initial conditions.
e Indamped systems, after a while, the response from the initial conditions will die out and the system’s vibration will be
dominated by the particular response (solution).

2.1 Harmonic excitation F(t) = F,cos(wt) or f(t) = % = [, cos(wt)
(fo = %’ note that the Sl unit for f is [kﬁg] = [SEZ])
2.1.1 Undamped Case (c=0,{ =0,r #1)
Differential equation: ¥+ wix = f, cos(wt)
Particular solution: x,(t) = m%f_owz cos(wt)
xp() xp(8)

Total solution with IC: x(t) = :)—Osin wyt + (xo = %E) cosw,t + fo cos(wt) (eq. 2.11)
n n

wi-w?

2fo

2_
wi-w

and beat frequency of Wpeer = W, — @

Zero initial conditions in this case will lead to beating, with amplitude =

x(t) = m;{"mz sin (w"z—w t) sin (9”2—+w t)(eq. 2.13)

2.1.2 Resonance at undamped case (¢ = 0,w = w,)or({ = 0,r = 1)

x(t) = A; sinwt + A, coswt + i—)t sin wt (eq.2.17), A4, A, depend on initial conditions.

2.1.3 Damped Case

Differential equation: ¥+ 20wy x + wZx = fy cos(wt)
Particular solution: x,(t) = X cos(w.t — 6)
J@Z—02)? + 2Qw.w)?  @n JA -2+ (2(r)? W
and f—‘; = F°2 =k (i.e. displacement of the spring if Fy was applied statically)
wy; Moy k

6 = atan2( 2{w,0, w?—w?) =atan2(2{r, 1-—r?)

1
2.1.3.1 Resonance (for0 < { < \/_E)

w
Lak: rpeak:\./l_z(z

Wy
if {1
S
fo 1 Fo

Fy
X =—. = = —
peak T wkor 1—02  2kgJ1—¢2 2K
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3 Base Excitation

3.1 Harmonic Excitation :L_\.(f)
mi+c(x—y)+k(x—y)=0, y=7Ysin(wt) fromNSL "

Standard form: =
=N
¥+ 20wy % + wZx = 2{w,0Y X cos(wt) + wiY X sin(wt) % —[
== EE

Particular solution: [ Base

x,(t) = X .sin(w.t — )

. Y.\/ k2 + (cw)?

(k — mw?)? + (cw)?

Or

B 14+ (2¢r)? L
X‘Y'J(l—r2)2+(zzr>2’ "o

Y = atan2[mcw?® , k(k —mw?) + (c.w)?] = atan2[2{r® , (1—1r*)+ (2{r)?*]

|—| = . THRASHE is called displacement transmissibility, it is around 1 at low frequencies, then it reaches to its
Y (1-12)2+(2.0.1r)?

. 1 . . .
maximum (resonance) very close to r = 1, to a value close to Y This ratio reduces and reaches 0 as the r increases

(i.e. when base vibration frequency increases to values much higher than the natural frequency, the mass remains
almost still. In other words, you cannot oscillate an object at frequencies much higher than the natural frequency

that is created between that object and its base). (Fig. 2.14)

3.1.1 Transmitted Force
Ft) =k(x—y) +c(x —y) = —m& = —mw?X.sin(w.t — )

X 1+ (2.4.7)?
?| = {fr?} % \ﬁl —r2)2 4 (2.0.1)%

i — 1+(2.Z.T)2 5 o _ep_sye . . . . .
|kY =71 X ’———(1_T2)2+(2.{_r)2 is called force transmissibility ratio (FTR). This ratio is very small at low frequencies

(compared to the natural frequency). It has a local peak very close to r = 1, approaching % With non-zero

F
il 2
|Y| me

damping ratio, FTR keeps increasing as the r ratio increases. (Fig. 2.15 in the book).

4 Rotating Unbalance

NSL: mi + cx + kx = myew? sin(w, t) = Fy sin(w, t)



(m is the total mass of the machine, including the unbalance mass. myis the m
. L ; 0
unbalanced mass, that rotates with eccentricity e and angular velocity of w;.).

T
Particular solution: x,(t) = X sin(w,t — 8) 1/’—@%\
52 ‘\\ ,;/'
_ Fo/ m oM e A ot
Jwh =P+ Qa1 2 o 3
c

0 = atan2(2{w,, , w2—ow?) =atan22{r , 1-—r?)

_

Xxm r? . : .
= —————— s avery small number at low frequencies, at resonance it

emy  J-12)2+(2(r)?

1 . o . . )
becomes almostz—Z and at very high frequencies it becomes 1 (with 8 = ), this means the machine (m — m,) moves

in the opposite direction, to keep the center of total mass in an almost stationary position.

5 Linear Systems, Superposition
1. For a linear homogeneous differential equation, e.g. ¥ + 2{w,x + wjx = 0:
e ifx,(t) and x,(t) are [homogenous] solutions to ¥ + 2{w, % + wix =0,

then a,x; (t) 4 ayx,(t) is a [homogenous] solution to ¥ + 2{w, % + wix = 0.
2. For a linear equation of motion, e.g. ¥ + 2{w, % + wix = f(t) with constant coefficients for ¥, X, x:

o if x,(t) is a particular solution to X + 2{w, % + wix = fi (1),
e andif x,(t) is a particular solution to ¥ + 2w, % + wix = f,(¢),

then ayx; () 4 a,x,(t) is a particular solution to ¥ + 2{w, % + wpx = a1 f,(t) + a,f>(t).

6 Response to a Periodic Excitation (Fourier Series)
Any periodic function F(t) with period T could be represented by an infinite series of the form:

a
F(t) = 70 + z [a, cos(nwyt) + by, sin(nwrt)]
n=1
. 2m 2 (T 2 (T 2 (T .
With wp =7, ag = ;fo F(t)dt, a, = Ffo F(t) cos(nwyt) dt and b,, = Ffo F(t) sin(nwyt) dt. (Eq. 3-20 to
3.23). The superposition principle could be used to calculate the response to the periodic force by calculating the

response to each Fourier term and adding the resulting displacements.

7 Response to impulse excitation, underdamped SDOF:
mi + cx + kx = F8(t— 1)
= x(t) =F.h(t—1)

h(t—1) = e lontDginwy(t—1) t=71 (eq.3.9)

mwg
8 Response to arbitrary excitation
x(t) = —— e~ont fOt[F(r).eZ“’nTsinu)d(t—t)]dt:; fot[F(t—r).e'z“’nTsinu)dr]dt (3.13)

mwg mwq




9 Modal Analysis

(In this section, boldface is used to show matrices).

9.1 Modal Analysis of undamped free response
Mx(t) + Kx(t) =0

9.1.1 General mass matrix, by Cholesky decomposition
Mx(t) + Kx(t) =0 (eq. 4.54)

Calculate lower triangular matrix L such that M = LLT (see the footnote?)

Calculate L1

Calculate the mass normalized stiffness matrix K = L™*K(L™)T

Calculate the symmetric eigenvalue problem for K to get a)l-z and Orthonormal eigenvectors v;. Build P with
these orthonormal eigenvectors:

BN

P= [Vl,Vz,V3, ]

[since K is a symmetric matrix its eigenvectors will be orthogonal to each other, i.e. V1TV2 = 0, But vq,Vvy, ...V,
should also be normalized, i.e. their norm ||v;||, square root of sum of square of elements, should be 1. You can

ensure this by updating the eigenvectorsas vy ..., = vi/|lvill
Since the columns of P are orthonormal eigenvectors of K, then PTP = I,,5.,, (n X n unity matrix) and PTKP = A..
and A is a diagonal matrix with square of natural frequencies for each modes shape as its main diagonal:

= w% O =
O w% .

A= diag(miz) = 3

2
Wy |

5. Calculate S = (LHT P and S71 = PTLT
6. Calculate the modal initial condition vectors, r(0) = S~1x,,1(0) = S71x,
7. Substitute r(0) and 1(0) into equations (4.66) and (4.67) to get the solution in modal coordinate r(t):

.2
ﬂlwizri,zo t+ 7o
r (8) = ST

A
8. Multiply r(t) by S to get the solution x(t) = Sr(t)
Note that S is the matrix of mode shapes and P is the matrix of eigenvectors of K.

sin(a)it + atan2 (w;7ig , Ti0) ) L= 1,2,

9.2 Modal Analysis of the Forced Response, with general mass matrix and damping
Mx(t) + Cx(t) + Kx(t) = BF(t) (eq. 4.126)

BF(t) is used to shape application of various force functions on degrees of freedom.

1. Calculate lower triangular matrix L such that M = LLT. For diagonal mass matrix see the footnote in the
previous page.

If the damping matrix has specific conditions, e.g. it is a proportional to mass and stiffness matrices as:

C=aM+ pK

21 1
2 |f you can easily calculate Mz, (e.g. when you have a diagonal M matrix), then you can replace L by Mz in the

remining of equations and L™ = M~1/2_ with a diagonal M matrix directly take the square root of diagonal
1
elements to calculate L = Mz. You can not do so if M was not a diagonal matrix.

5



The result of transformation € = L™1C(L™1)T = al + BK becomes diagonal if the matrix of eigenvectors of Kare
multiplied to it from the right (P) and left (PT) as follows:

PTCP = diag[2¢w;]
Replacing x(t) with x(t) = (L™1)Tq(t) in the differential equation (4.126) and multiplying L~ from left results in:
14(t) + Cq(t) + Kq(t) = L1BF(t) (similar to eq. 4.128)

Defining q(t) = P r(t), where P is the orthonormal eigenvector matrix of K, [note that this results in x(t) =
(DT qt) = (LHTP r(t) and With S = (L"HT P and $™1 = PTLT then x(t) = Sr(t) and r(t) = S™'x(1)]

replacing q(t) = P r(t) in (eq. 4.128) multiplying PTfrom left to this equation results in:
Ly £(t) + diag[2gw;] #(t) + Ar(t) = PTL™*BF(t) (similar to eq. 4.129)
In above equation:

o PTCP = diag[2¢w;] and A = PTKP = diag(w;")
e The vector PTL™'BF(¢) has elements f;(t) that will be linear combination of forces applied to the degrees
of freedom.
e The modal initial conditions are calculated as r(0) = S™1x, and ¥(0) = S™1x,
e The response for each mode (elements of r(t) ) could be calculated similar to the response of single degree
of freedom systems with f;(t) excitation:
() + 2g0:7(8) + wir(t) = f;(£)

(e.g. if it is harmonic excitation by the same equations as in 2.1), . or by eq. 3.13.

The resulting r;(t)s are assembled back in r(t).
e The response in natural coordinate system is obtained by x(f) = Sr(t)



9.3  Physical, Mass Normalized and Modal Spaces

Eq. Name Mass Damping Stiffness Matrix Transformation |State State Vect
Matrix |Matrix Matrix Vector J
MX + Cx + Kx = BF(¢t) Physical
Space M C K X(t)

- F Kag=1-1 Mass ~ 7 7 =~ -

I+ Cq+Kq = L7"BF(%) Normatned| ] c K K=@CHRLH | q@) |[q@)=L"X(
I + diag[2gw;]i* + Ar

= PTL'BF(%) 7
. . . A =P KP T

Decoupled differential Modal I [diag(2¢; w; )] | A _PTAY RAZYTP | r() r(t) = PTq(t
equation*. Space (*) = [diag(w])]| _ STI({ " = S71X(t)
Or fori = 1tomn: -
¥+ 28w, + @i = fi(0)

* ONLY IF STC S becomes a diagonal matrix [diag(2{; w; )], e.g. when C = aM + B K, then STCS = al+ A = [diag(2{; w;)]

Transformation Matrices:

Description Definition Calculation in MATLAB
Normalization of Mass Matrix M = LLT
L | Lower triangular Cholesky’s matrix L = chol(M, ‘lower’);
for M
P :[Vl,Vz,Vg,...] ; _ A Sl e
P | Makes K diagonal Matrix of Orthor]rormal Eigenvectors of K Tﬁ?li:;bga](l‘: (e;.lL;)( KKti(idé) L)
P P = IIlXIl -
S | Matrix of Mode Shapes, S= (L'HTp S = (LA(=1))" * P
Moves from Modal Space to
Physical Space Also S~ = PTLT and $ Or
sT =PI
(in general, ST # S71) S = (L")\P




Physical, Mass Normalized and Modal Spaces with [SI units] (for translational mass systems):

Eq. Name Mass Damping Matrix |Stiffness Matrix Transformation [State Vector State Vector T
Matrix Matrix N
N.s] . mm
Mikgls[55] + ¢ [=]x[£ . » N X(1
‘ [ 2 [s] P:y:l;al M[kg] C [_S] K H X(£)[m] |
+KHX[m] = BF(t) [N] P m m = &
[m ] + Cq+K
q+iq N 1 N 1
Mass . S - T
—_ = — = — — -1 -1 — T
ka_g Normalized - ¢ [kg.m s ] K [kg. m 52] = WHK(T) q(t)[m\/@] @) =130 | al
= L-1BF() ‘ &
s
m
¥ [ ] + diag[2gw;]i + Ar
[diag(2{; w; )] 1 A =PTKP
m,/kg [ ] = e
_ pTp-1 Modal 1 Al= r(t) =Plq(t
=P LTBF(1) [ < } spce | 1 |= [;] 2l =T k()P [r(0[myke] :(S)_]X(t)q( )
Decoupled differential (*) = [diag(f)] | = sTk'S
equation*, fori = 1ton:
¥+ 241 + of 1 = fi(D)
* ONLY IF STC S becomes a diagonal matrix [diag(2¢; ;)] , e.g. when C [%] =a E] M[kg] + [s] K [%] ,then STCS = al + BA = [diag(2{; ;)

Transformation Matrices:

Description

Definition

Calculation in MATLAB

matrix for M

Normalization of Mass Matrix
Lower triangular Cholesky’s

M = LLT

L = chol (M, ‘lower’);

P[—] | Makes K diagonal

P =[Vy,Vy,V3,... |

Matrix of Orthonormal Eigenvectors of K

PTp =1

K tilde = (L7~ (-1))*K* (L™ (-
[P, Lambda] = eig(K tilde

Matrix of Mode Shapes,

Physical Space

Moves from Modal Space to

s= (LOHTp

11 g =
1

ST__ :PT L—1
] =rre

(in general, ST = S§71)

Also S~ PTLT and

S = (L"(-1))" * P
% Or
S = (L")\P




10  Power/Logarithm

e =b e a=In(b)

11 Matrix Identities
If k is a scalar then kA = Ak

Matrix to vector multiplication:

Ao 4=
ae+bg]

= Av :[ce+dg

Matrix to matrix multiplication (for 2x2 matrices):

A=l dm=[; il

ae+bg af+bh]

= AB :[ce+dg cf +dh

Compatibility: For matrix multiplication to be
defined: ApyxnBnxp = Cmxp
Associativity: (AB)C = A(BC)

Distributivity: A(B+ C) = AB + AC
Identity Matrix: Al = A and JA = A.

Not Commutative: in general: AB # BA
Determinant of multiplication:
det(AB) = det(A) det(B)

Transpose of a 2x2 matrix:

a=[g J=am=[; 4

Transpose of product:(AB)” = BTAT.
Determinant and Inverse of a 2x2 matrix:

a b

A= [C d] = det(A) = ad — bc

Inverse of a 2x2 matrix:
a1 [ d —b]
det(A)l—c a

12 Euler’s formula

e® = cosO +isinf

13 Trigonometric Identities
Pythagorean identity: sin?0 + cos?8 =1

Angle Sum:
sin(e + f) =sina cosf + cosasinf
sin(a — ) = sinacosf — cosasinf3
cos(a+ B) = cosacos 3 — sinasin 3
cos(ae —B) = cosacosf + sina sin

tana + tan

t + =
an(a £ ) 1+ tanatanf

Product-to-sum
cos(B — @) + cos(6 + @)

cosBcos = >
_ _ cos(6 — @) — cos(B + @)
sin B sin @ = 5
_ sin(6 + @) + sin(6 — )
sin B cos = >
_ sin(0 + @) — sin(6 — @)
cosBsing = >

Sum-to-product

0+ 0+
sin® +singp = Zsin< (p) cos( (p)

2 2
0+ B0
cosG—coscpz—Zsm( )sm( )
2 2
0+ 0 —
cos8 + cos@ = 2 cos ( <p) cos( (p)
2 2
sin(B +
taneitancp:(—_(p)
cos B cos @

14 Quadratic equation

—b + Vb2 —4ac
ax’+bx+c=0=>x= o

Reduced form (a = 1):

x2+px+q:0:>x:—§ir (g)z_q



15 Four Quadrant Arctangent
Function, atanZ2(y, x)

)

90° An/2

;, 360°
0, 2m
270°| 3n/2
y
atan (—) x>0
X

atan(%)+7r y=20,x<0

y :
atan (&) = 4 atan(;)—n y<0;x<0

T >0
y ‘))x_'—ﬂ
2 y ’

undefined y=x=0
In MATLAB and many other software, the correct
form is atan2(y,x), but in Excel, you should enter
ATAN2(x;y) to get the correct answer.
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