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Written exam MT355G- Mechanics IV 2023-11-17

Question 1 (10p)

The following dynamic parameters are given for the system below:
Ns

ke = 3000 & = 10002 . = 16 ke m, = 4kg ¢; = 302 ¢, = 10
1= - m'ml_ g m, = g C1 = mrcz— m

m i_(fl

X

a) Obtain the mode shapes and natural frequencies using modal analysis approach. (5p)
b) Obtain the response of the system if the excitation force on m, was F(t) = 500 5(t — 1),
and T = 1, assume zero initial velocity and position for the masses. (5p)

Question 2 (5 p)

In the folowing system, the rotation speed in rad/s is numerically equal to
the natural frequency of the mass-spring system, i.e. w, = w, =40 rad/s.
The machine is modelled as having a stiffness 4000 N/m, the eccentric mass
is 0.01 kg, at a radius of e =0.15 m.

a) Design a damper (that is, chose a value of c) such that the maximum
deflection at steady state is 0.002 m. (2p)

b) find the allowable driving frequencies (below and above the natural
frequency) that create maximum allowable deflection at steady
state below 0.001 m (with the damper value chosen above). (3p)




General Case:

mx + cx + kx = F(t) Newton’s 2" Law (NSL) - £
_ c m —— F(2)
wnh(zz\/ﬁ,wn:\/k/m,f(t):F(t)/m 1 NV
" . | i
¥+ 20w, x + w2x = f(t) Mass normalized form %

initial conditions: x(0) = x, and x(0) = v,

Dynamics of rotating systems

—= x(1)

Shaft and Disk

. N-mj. NN\
][kg-m2]6+c,9[ ]9+k9[N-m]9=T(t)[N-m] ‘
; Torsional |
. _ cp _ ke _ Stiffness |
with { = Tk e \/7 J@® =T®)/] ke
Moment
0+ 2qw,8 + w20 = f(t) of inertia
B ol
1 Free Vibration (F(t) = 0) {f S
1.1 Undamped Case (¢ = 0) —
¥+ wix =0
solution:
Vo
x(t) = a.sin(w,t) + b.cos(wyt) g=-_ - b =x,
n
Or
BB 1 12 Xo@
x(t) = A.sin(w,t + @) A= Xo@a T Vo ¢ = arctan( 2 n)
Wy Vo
1.2 Damped Case (With Viscous Damping, ¢ # 0)
¥4 2¢wpx + wix =0 Z=2m¢0
1.2.1 Underdampedcase (0 < { < 1)
solution:
wq = wpy1— 2
Vg + {wnX
x(t) = e~$@nt[a.sin(wyt) + b. cos(wgt)] = —0—% b = x,
d
Or
2 w2 2 2 X
- —{wnt o; \/;dxo + (170 + anxo) — ( a-0
x(t) = Ae .sin(wgt + ¢) A= ¢ = arctan .
Wq
1.2.2 Critically damped case ({ = 1)
x(t) = (ag + ayt)e”@nt Oy =%y a, = vg + wpxg
Eq. 1.45 Eq. 1.46 Eq. 1.46




1.2.3 Overdamped case ({ > 1)

a;
x(6) = efont (a,e" @ 1 gyt @nfDn) | vy + ({+VE - Donto | a, = vo + (¢ + \/ZZZ— 1)waXo
20,/ — 1 A

Eq. 1.41 Eq. 1.42 Eq. 1.43

2 Forced Vibration (F(t) # 0)

The general response will be the sum of the free vibration response added to the particular solution, x,(t). The sum
should satisfy the initial conditions (coefficients such as a,b for the free response should be adjusted and will not
always follow the same relationships for the free vibration). In damped systems, after a while, the response from the
initial conditions will die out and the system’s vibration will be dominated by the particular response (solution).

2.1 Harmonic excitation F(t) = F,cos(wt) or f(t) = %t) = f, cos(wt)

=n i s [l = [
i = —p note that the Sl unit for f is [kg] - [ ])

SZ
2.1.1 UndampedCase(c=0,{=0,r #1)
Differential equation: ¥+ w2x = f, cos(wt)

Jfo

wi—w?

Particular solution: Xp () = cos(wt)

Total solution with IC:x(t)=—visina)nt+ Xg — zf“ cos wut + fy cos(wt) (eq. 2.11)
wn 0 w2-w?

2_ )2
wH—w

2o

wi—w?
(0 = s (52)sn(22) tea 219

2.1.2 Resonance at undamped case (c = 0,w = wy)or({ = 0,r = 1)

x(t) = A; sinwt + A, cos wt + z%t sin wt (eq. 2.17), A4, A, depend on initial conditions.

Zero initial conditions in this case will lead to beating, with amplitude and beat frequency of Wpeer = W, — @

2.1.3 Damped Case

Differential equation: ¥+ 2¢w,x + w2x = f, cos(wt)
Particular solution: xp(t) = X cos(w.t — 6)
.o fo _f ! _
J@i— 0D+ @w.w)?  @n T —rH2+ (2)? Wn
Jo _ _Fo _ Fo . —_ . .
and etk (i.e. displacement of the spring if Fy was applied statically)
2wy w 2{r
6 = arctan <%> = arctan( ¢ 2)
w5 — W 1—r

1
2.1.3.1 Resonance (for0 < { < J_E)

w
—peak rpeak:\/l'—zzz

Wq
if <1
s
fO 1 FO FO

~

X = —. = &~
peak = 2o J1—2  2kiJ1—¢2 2K




3 Base Excitation (1)

S———

|

3.1 Harmonic Excitation "
mi+c(x—vy)+k(x—y)=0, y=7Ysin(wt) fromNSL

Standard form:

I

laal]

¥+ 2{wp% + wix = 2{w,wY X cos(wt) + w2Y X sin(wt) Base
Particular solution:
xp(t) = X .sin(w.t — )

T ¥ k2 + (cw)?
T (k= mw?)? + (cw)?

Or
_ 1+ (2¢r)? o
X—Y'J(l—rz)zﬂzgr)r " o
3 3
Y= arctan[ mee ] = arctan[ 20T ]
k(k — mw?) + (c.w)? (1 —72)+ (2¢r)?

1+(2.0.1)? . . oF ais ; :
I | ’(1~r2)2+(2 o0 is called displacement transmissibility and reaches to its maximum (resonance) very close to

7 = 1. This ratio reduces and reaches 0 as the r increases (i.e. when base vibration frequency increases to values
much higher than the natural frequency, the mass remains almost still. In other words, you cannot oscillate an object
at frequencies much higher than the natural frequency that is created between that object and its base). (Fig. 2.14)

3.1.1 Transmitted Force
F(t) = k(x —y) + c(x —y) = —m¥ = —mw?X.sin(w.t — )

x| 14 (2.4.7)?
2 ?l = (k.7%) X \ﬁl —7r2)2 + (2.0.7)%

Fl_ .2 1+(2.0.1)? . s _Epans s ; i
le =7r*X ’———(1—r2)2+(2.(.r)2 is called force transmissibility ratio. This function also has a local peak very close to

r = 1 With non-zero damping ratio it keeps increasing as the r ratio increases. (Fig. 2.15 in the book).

Y

i

4 Rotating Unbalance

NSL: m¥ + cx + kx = mpew? sin(w, t) = Fy sin(w, t)

(m is the total mass of the machine, including the unbalance mass. myis the
unbalanced mass, that rotates with eccentricity e and angular velocity of w,.).

Particular solution: x, () = X sin(w, t — 0)
3 Fy/m mg 2 o,
@I =l + a2 ™ JA-127 + @22 wn
2{ W, W, 2(r
0 = arctan (—g—n—g> = arctan( ¢ 2)
5 — Wy 1—r

3




5 Response to impulse excitation, underdamped SDOF:
mi + cx + kx = F§(t— 1)
= x(t) =F.h(t—1)

h(t—1) = m;w.e‘z“)n(t_ﬂ sinwg(t—1) t=t (eq.3.9)

6 Response to arbitrary excitation
x(t) = L etont fJ[F(t).eZ‘“nTsinwd(t—t)]dr=; fot[F(t—T).e'z“’nTsinoodr]dt (3.13)

mog muog

7 Modal Analysis

(In this section, boldface is used to show matrices).

7.1 Modal Analysis of undamped free response
Mx(t) + Kx(t) =0

7.1.1 General mass matrix, by Cholesky decomposition
Mk (t) + Kx(t) = 0 (eq. 4.54)

Calculate lower triangular matrix L such that M = LLT (see the footnote?)

Calculate L™

Calculate the mass normalized stiffness matrix K = L2 K(L™)T

Calculate the symmetric eigenvalue problem for K to get a)iz and Orthonormal eigenvectors v;. Build P with
these orthonormal eigenvectors:

B> W

P= [VI,VZ,V3, ]

[since K is a symmetric matrix its eigenvectors will be orthogonal to each other, i.e. V1Tv2 =0, But vq,Vvy, ...V,
should also be normalized, i.e. their norm ||v;]|, square root of sum of square of elements, should be 1. You can

ensure this by updating the eigenvectorsas vi ..., = vi/+/ vl

Since the columns of P are orthonormal eigenvectors of K, then PTP = L5, (n X n unity matrix) and PTRP=A.
and A is a diagonal matrix with square of natural frequencies for each modes shape as its main diagonal:

_w% 0 =

A= diag(m;") =

L w?]

Calculate S = (L”H)T P and$™1 = PTLT
. Calculate the modal initial condition vectors, r(0) = S™1x,,7(0) = S™1x,
7. Substitute,, r(0) and (0) into equations (4.66) and (4.67) to get the solution in modal coordinate r(t):

2..2 . 2
,/wi o t Tio
- 3in

() = ,

8. Multiply, r(t) by S to get the solution x(t) = Sr(t)

wiTo\ .
w;t +arctan——| ,i =1,2, ...
Ti,0

1 1
11f you can easily calculate Mz, (e.g. when you have a diagonal M matrix), then you can replace L by Mz in the
remining of equations and L™! = M~1/2_Wwith a diagonal M matrix directly take the square root of diagonal

1
elements to calculate L = Mz. You can not do so if M was not a diagonal matrix.

4




Note that S is the matrix of mode shapes and P is the matrix of eigenvectors of K.

7.2 Modal Analysis of the Forced Response, with general mass matrix and damping
Mx(t) + Cx(t) + Kx(t) = BE(t) (eq. 4.126)

BF(t) is used to shape application of various force functions on degrees of freedom.

1. Calculate lower triangular matrix L such that M = LLT. For diagonal mass matrix see the footnote in the
previous page.

If the damping matrix has specific conditions, e.g. it is a proportional to mass and stiffness matrices as:
C=aM+ K

The result of transformation € = L™1C(L™)T = ol + BK becomes diagonal if the matrix of eigenvectors of K are
multiplied to it from the right (P) and left (PT) as follows:

PTCP = diag[2¢w;]
Replacing x(t) with x(t) = (L7Y)Tq(¢) in the differential equation (4.126) and multiplying L™ from left results in:
1§(t) + Cq(t) + Kq(t) = LIBF(¢) (similar to eq. 4.128)

Defining q(t) = P r(t), where P is the orthonormal eigenvector matrix of K, [note that this results in x(t) =
L HT q(t) = L HTPr(t) and With S = (LT P and $~1 = PTL" thenx(t) = Sr(t) andr(t) = S™'x(1)]

replacing q(t) = P r(t) in (eq. 4.128) multiplying PTfrom left to this equation results in:
L B(1) + diag[2g0;] 1(2) + Ar(t) = PTLT'BF(t) (similar to eq. 4.129)
In above equation:

e PTCP = diag[2{;w;] and A = PTR P = diag(w})

e The vector PTL™'BF(t) has elements f;(t) that will be linear combination of forces applied to the degrees
of freedom.

o The modal initial conditions are calculated as r(0) = S~'xy and ¥(0) = S71x%,

e The response for each mode (elements of r(t) ) could be calculated similar to the response of single degree
of freedom systems with f;(t) excitation:

#(1) + 24w;7,(8) + wir(t) = f;(©)
(e.g. if it is harmonic excitation by the same equations as in 2.1), . or by eq. 3.13.

The resulting 7;(t)s are assembled back in r(t).
e The response in natural coordinate system is obtained by x(t) = Sr(t)




7.3 Physical, Mass Normalized and Modal Spaces

Eq. Name Mass Damping Stiffness Matrix Transformation |State State Vector Transformation |Force Vector
Matrix |Matrix Matrix Vector NE A
Mx + Cx + Kx = BF(¢) Phvsical X(t)
S;’m M € K X(t) = (LHTq(t) BF(t)
= Sr(t)

g+ Cq+Rq=L"'BF() | M | c K R =@HREDT | q@) |9 =X | a@) =Pr@) L7'BF(t)
P s " —_pTt
C Gl A ery | Mo | [[diag(@gi w4 e PTIEUI)PKgﬁl)TP o 1O =PTa® £(t) = PTL'BF(t)

E3 ik 5 - N o € —cT

Decoupled differential equation. i ) = [diag(o)] =SsTKS = 57X = S"BF(t)
* possible if STC S becomes a diagonal matrix [diag(2¢; w; )], e.g. when C = aM + S K, then STCS = al + A = [diag(2{ w;)] I

Transformation Matrices:

Description Definition Calculation in MATLAB With Diagonal M

Normalization of Mass Matrix M=LLT L = ML/?
L | Lower triangular Cholesky’s matrix L = chol(M, ‘lower’);

for M

o P = [Vy, V2, V3, ... K tilde = (L~(=1))*K* (L~ (-1))’;

P | Makes K diagonal Matrix of Orthonorn[1al Eigenvector]s of K [P, Lambda] = eig (K tilde)

Matrix of Mode Shapes, S= @LHTp S = (LM(=1))" * P

Moves from Modal Space to

Physical Space Also S = PTLT and % Or

ST = pPT(LY)
(in general, ST # S71) S = (L")\P




8 Power/Logarithm:

e*=b e a=In(b)

9 Euler’s formula

e® = cosf +isinf

10 Summary of Trigonometric

|dentities
Pythagorean trigonometric identity:
sin?0+ cos?0 =1

10.1 Angle Sum:
sin(a + ) =sina cosp + cosasinf
sin(a — B) = sinacosf — cosasinf3
cos(a+ ) = cosacosf3 —sinasinf
cos(a—B) = cosacosf+sina sinf

tana + tan 3

tR)=———---s
tana.+ ) 1+ tanatanf

10.2 Product-to-sum
cos(8 — @) + cos(6 + o)

cosBcosp =

2
) ) cos(6 — @) — cos(B + )
sin O sin ¢ = >
. sin(0 + @) + sin(6 — @)
sinB cos@ = >
) sin(8® + @) — sin(6 — @)
cosBsing = >

10.3 Sum-to-product

0+ 0+
sineisin<p=25in< (p)cos< th

2

. (Bto
cosG—coscpz—Zsm(

0+ 6 —
cos@+cos<p:2cos< Z(p)cos( (’0>

sin(6 + @)
cosBcos

tan@ + tan @ =

11 Summary of Matrix Identities
Associativity: (AB)C = A(BC)

Distributivity: A(B + C) = AB + AC
Identity Matrix: Al = A and [A = A.

Not Commutative: in general, AB #+ BA

Scalar Multiplication: If k is a scalar then kA =
Ak

Determinant of multiplication:
det(AB) = det(A) det(B)

Transpose of product:(AB)T = BTAT,

Compatibility: For matrix multiplication to be
defined: AxnBnxp = Cmxp

Determinant and Inverse of a 2x2 matrix:

A= [CCL Z] = det(A) = ad — bc

and

B 1 _
"= det(A) [—dc ab]



