1977

UNIVERSITY
OF SKOVDE
School of Information Technology
WRITTEN EXAMINATION

Course Algorithms and Data Structures G1F
Course code IT405G Credits for written examination 6
Date 2025-01-13 Examination time 14:15-19.30
Examination responsible Yacine Atif

Aid at the exam/appendices ~ Swedish-English / English-Swedish dictionary

Other
Instructions [Take a new sheet of paper for each teacher.
Take a new sheet of paper when starting a new question.
Write only on one side of the paper.
Write your name and personal ID No. on all pages you hand in.
Use page numbering.
Don’t use a red pen.
Mark answered questions with a cross on the cover sheet.

Examination results should be made public within 18 working days
Good luck!

Total number of pages: 10

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F
2025-01-13

QUESTION 1 [Course Goal 1: Complexity Analysis]

a) Derive a time complexity expression in O(+) notation for the algorithms below. The answer must
contain a reasoning about the different parts of the algorithm that clearly describes how you derived
the time complexity. Assuming all used variables have been declared, formulate your solution in
the form of explanatory steps.

i. Input: n is an integer

for j « 1 to n do
for k « 1 to log(n) do
print(j + k)

ii. Input: n is an integer

X « 1
for 1 « 1 to n do
for j « 1 to n do
if j mod 2 == 0 then
X « X *
else
X « x + 1

iii. Recursive Function.

function recursiveSum(arr, left, right){
if left == right {
return arr[left]

}
mid = (left + right) / 2
return recursiveSum(arr, left, mid) + recursiveSum(arr, mid + 1, right)

b) Analyze and write the time complexity in Big O notation of the following code snippets,
using the letter “n” to represent the size of the input for each of the following codes.
Motivate and explain your reasoning.

i. void CodeA(int n) {
int sum = 0;
for (int 1 = 1; 1 <= n; i++) {
for (int j = 1; j <=n; j *= 2) {//Increment by powers of 2
sum += 1 + 7J;
}
}

printf ("$d\n", sum);

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F
2025-01-13

ii. void CodeB(int n, int *a) {

int result = 0;
for (int i = 0; 1 < n; i++) {
for (int 3 = n; §J > 0; j—-) {
result++;
}
}
for (int i = 0; 1 < n; i++) {

for (int j = 0; 3 < i; J++) {
if (alj] < a[i]) |
result++;

}

}

printf ("%d\n", result);

iii. dnt rec f{inmt n} {
if (n <= 0) {
return 1;
} else {
return 1 + rec f(n - 1) + rec f(n - 2);

}

¢) Write the pseudo-ode of the function closest to zero pair (A) that takes an
array of integers A (which can contain both positive and negative integers) and returns
the pair of elements whose sum is closest to zero.

i. Provide an algorithm that solves this problem in O(n?). TIP: Evaluate all pairs and
compute the closest sum to zero.

ii. Provide another algorithm that solves this problem in O(n log n). TIP: Use sorting.

iii. Assume the input array may contain duplicate values. How should the above
algorithms be adjusted to handle duplicates? Does it change the time complexity?

QUESTION 2 [Course Goal 2: Data Structures]

a) Consider a hashtable with an array of size n, where elements are stored using linear
probing for collision resolution. The hash function is defined as:

hi(k) =k mod n

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F

2025-01-13

The following operations are supported:

insert (hash table, key): Insertsthe key into the hashtable.
search (hash table, key): Searches for the key in the hashtable.

il.

iil.

Use linear probing to resolve collisions in a hashtable of size n = 7, and show the
final state of the hashtable, after all of the following insertions, if successful:

e Insert 10
e Insert17
e Insert24
e Insert3l .
e Insert45

Modify the hash function to include double hashing:

The second hash function is defined as:

hs (k)=1+(k mod(n—-1))

Consider a new hastable of size n = 7 that employs double hashing to resolve collision,
using the function h:1 used in the previous question and the above function h, that
are applied in sequence when collision occurs. Show the state of the table after all
the following insertions, if successful:

e Insert 10
e Insert17
e Insert24
e Insert 38

An alternative collision resolution mechanism uses chaining. Show the final state of
the hashtable after inserting the following keys: {10,17,24,38,45}, when chaining
mechanism is applied.

b) Queue, Stack and Heap:

1.

Determine whether the following statement is true or false. If false, explain why.
In a linked-list implementation of a Queue ADT, both enqueue and dequeue
are O(1) time complexity operations.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2025-01-13

ii. Compare the time complexity of the push() and pop() operations for both array and
linked list implementations of a stack.

iii. Consider the following sequence of numbers to insert into a binary heap, in the given
order:

(15, 10, 30, 40, 50, 20, 5}

Construct a min-heap by drawing the binary tree representation of the heap.

c) Trees

i. Draw the BST after inserting the elements {10, 50, 30, 20, 40} into a Binary Search
Tree (BST).

ii. Insert the elements {50,40,30,20,10} into an AVL tree in this order. Consider the
folloings when doing so:
e Draw the tree after each insertion.

e Show and explain all balancing steps (rotations) to maintain the AVL property.
e Write the final tree's in-order traversal.

iii. Given the following sequence of operations on an empty Splay Tree:

e Insert 25
e Insert 15
e Insert 50
e Search for 15
e Insert 35

e Search for 50

Show the Splay Tree structure after each operation and circle the final one.

QUESTION 3 [Course Goal 3: Sorting]

a) Selection Sort

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F
2025-01-13

i. Explain the Selection Sort algorithm and describe its primary characteristic in terms of
how it selects elements for sorting.

ii. Given the array [4, 7, 1, 5, 3], show the state of the array after each iteration of the outer
loop in the Selection Sort algorithm.

iii. Provide with explanation the time complexity of Selection Sort and explain why it is
preferred for sorting very small datasets?

b) Mystery Sort
Consider the following code:
Function MysterySort (Array A, Integer n)
For i from 1 to n-1
key = A[i]
j=1-1

While (j >= 0 and ..C..)

Alj + 1] = A[]]
j=3-1
EndWhile
Al + 1] = key
EndFor
EndFunction

i. What sorting algorithm does the above code represent?

ii. Provide the missing condition C in the while loop.
iii. Analyze with explanation the best-case and worst-case time complexities of Mystery

Sort.

c) Merge Sort

i. Explain the Merge Sort algorithm and how it uses the divide-and-conquer approach.

ii. Given the array [12, 7, 14, 9, 10, 11, 8], show the recursive splitting process. Indicate
how subarrays are combined to produce the final sorted array.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF

2025-01-13

iii. Why is Merge Sort a good choice for sorting linked lists compared to arrays? Explain
your answer by comparing the access patterns and memory usage.

QUESTION 4 [Course Goal 4: Graphs].

Given the following undirected graph where nodes are labeled A, B, C, D, E, F, G, H , with
edges shown below. Assume that when choosing between multiple neighbor nodes, we
always select the smallest letter in alphabet order.

a) Graph Properties:

i. State whether each of the following statements is TRUE or FALSE:

The graph is complete.
The graph is directed.
The graph is connected.

The graph is weighted.

ii. Breadth-First Search (BFS)

Starting from Node A, write the order of nodes visited using the BFS algorithm

iii. Depth-First Search (DFS)

Starting from Node A, write the order of nodes visited using the DFS algorithm.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F
2025-01-13

b) Graph Representation

The adjacency list representation of a graph with five vertices A, B, C, D, E is given below.

[e}—[c[3—~[L]
[o}—[cI]

i. Provide the adjacency matrix.
ii. Draw the graph.

iii. Discuss the adjacency list and matrix representation of the graphs in terms of
complexity analysis.

c) Dijkstra:

Consider the following graph.

1. Starting from Node A, show Dijkstra table that illustrates the order of visits of the
above graph when running the algorithm till the end.

ii. Show the resulting shortest paths from Node A to every other node, and corresponding
distances.

iii. Discuss, with justification, the Abstract Data Type (ADT) used to implement
Dijkstra's algorithm. Explain why this ADT is suitable and how it influences the
efficiency of the algorithm.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F
2025-01-13

QUESTION 5 [Course Goal 5: Algorithm Design]|
a) Algorithm Design

Consider a function fwhere n is an integer (n >1):

fm)=f(n—-1)+2-f(n—3) forn>3

i. Write a recursive pseudo-code to compute the function ff without using dynamic
programming.
ii. Using the recursive method, compute f(5) and (6).
iii. Describe any relevant observations regarding the time complexity of the recursive
computation and explain why it may be inefficient.

b) Dynamic programming

i. Using the "Bottom-Up" method, resolve the above problem (a) and compute
f(5) and f(6). Explain your solution approach.

ii. Using the "Top-Down' method with memoization, resolve the above problem (a) and
compute f(5) and f(6). Describe your approach..

iii. Compare the "Bottom-Up" and "Top-Down" methods in terms of complexity and ease
of implementation.

¢) MaxFlow

In the context of network flow problems, consider a directed graph representing a traffic
network where each edge has a capacity indicating the maximum number of vehicles that can
pass through per unit time.

i. Given the following directed graph with capacities on the edges, use the Ford-Fulkerson
algorithm to find the maximum flow from S to T. Show the flow in each step and the
residual capacities.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F
2025-01-13

10

ii. Calculate the total flow from S to T after applying the Ford-Fulkerson algorithm.

iii. Explain the concept of an augmenting path in the context of the Ford-Fulkerson

algorithm and its significance in determining the maximum flow.

10

