W

o)
sy
S o

N
UNIVERSITY
OF SKOVDE

>
)

VL,
N

¥
N

|
\

School of Information Technology

WRITTEN EXAMINATION

Course Algorithms and Data Structures G1F
Course code IT405G Credits for written examination 6
Date 2024-03-01 Examination time 14:15-19.30

Examination responsible Yacine Atif

Aid at the exam/appendices Swedish-English / English-Swedish dictionary

Other

Instructions [1 Take a new sheet of paper for each teacher.
XI Take a new answer sheet of paper when starting a new question.
X Write only on one side of the answer sheet paper.
X Write your name and personal ID No. on all pages you hand in.
Use page numbering.
Don’t use a red pen.
[1 Mark answered questions with a cross on the cover sheet.

Examination results should be made public within 18 working days
Good luck!

Total number of pages: 9

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2024-03-01

QUESTION 1 [Course Goal 1: Complexity Analysis]
a) Given the functions f{in) and g(n):

i.if Ti(n) = 0(f(n)) and T,(n) = O(g(n)), provide the final expression using a
single Big O notation of T, (n) + T, (n)

ii.if f(n) £ g(n), provide the final expression using a single Big O notation of
O(f(n) + g(n))

iii.if T;(n) = O(f(n)) and T,(n) = O(g(n)), provide the final expression using a
single Big O notation of T; (n) x T3 (n)

b) Use the Big O notation to indicate the complexity of the following algorithms with the
letter “n” representing the size of the input. Then, sort them in ascending order from the
lowest to the highest complexity order (a, b, ...).

i. (A) Logarithmic, (B) Constant, (C) Linear
ii. (A) Quadratic, (B) Exponential
iii. (A) Linearithmic, (B) Cubic

¢) Analyze and write the time complexity in Big O notation, using the letter “n” to represent
the size of the input for each of the following codes. Motivate/explain your reasoning.

1.

void Codel (double *a) {
double max = al[0];
int 1i;
for(i=1; i<n; i++)
if (a[i]>max)
max = al[i]l;

ii.

void Code2 (int n, int *a) {
int sum = 0, val = 0, f[n], i, 7J;
for (1i=0; i<n; i++){

for (j=i+1; J<n; J++){

if(afil< al3jl)

val= 1;
else
val= 0O;
sum = sum + val;
}
f[i]l= sum; sum = 0;

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, G1F
2024-03-01

iii.

int Code3 (int *a, int n, int target) {
int low = 0, high = n - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (a[mid] == target)
return mid;
else if (a[mid] < target)
low = mid + 1;
else
high = mid - 1;
}

return -1;

}

QUESTION 2 [Course Goal 2: Data Structures]

a) Consider an array-based implementation of a Stack with a capacity of 5 elements. Initially,
the stack is empty.

1. What is the status of the stack, presenting the elements in the stack from bottom to top,
after completing this sequence of operations:

push (1)
push (2)
push (3)
pop ()

// get top()

ii. Considering a new empty stack, describe the final state of the stack after executing the
following pseudo-code:

for i = 1 to 6
if 1 is even
push (1)
else if 1 is odd and the stack is not empty
pop ()
push (7)
while the stack is not full
push (peek () + 1)

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2024-03-01

iii. Fill-in the gaps of the following C-code illustrating a linked-list implementation of the
stack:

typedef struct Node {
int data;
struct Node* next;
} Node;

typedef struct Stack {
(a) top;

} Stack;

void push (Stack* stack, int data) {
Node* newNode = (Node*) malloc(sizeof (Node)) ;
if (newNode == NULL) {
exit(1l); // Failed allocation
}
newNode—->data = data;
newNode->next = (b) 3
stack->top = newNode;

}

int pop (Stack* stack) {
if (stack->top == NULL) {
return -1; // Indicate empty stack
}
Node* temp = stack->top;
int popped = temp->data;
stack->top (c) F
free(temp) ;
return popped;

Il

}

int peek(Stack* stack) {
if (stack->top == NULL) {
return -1; // Indicate empty stack
}

return (d) -

b) A Priority Queue with the min-heap property is considered. This means that the underlying
data structure of the priority queue ADT is a binary heap. You are expect to show the status
of the heap after inserting each element into the queue (one “drawing” per insertion). The
queue is initially assumed to be empty.

i. Draw the status of the heap after completing the following sequence of operations:
Insert 21; Insert 31; Insert 24; Insert 65; Insert 6;
Insert 1; Insert 32; Insert 16

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2024-03-01

ii. Continuing from the previous sequence of insertions, show the status of the heap after

completing the following sequence of operations:
Insert 68; Insert 19; Insert 13

iii. Continuing from the previous sequence, show the status of the heap after
invoking removeMin () three successive times.

c) Trees

i. Draw the AVL tree that results from inserting the keys: 2, 3, 5, 9, 6, 4 in that order
into an initially empty AVL tree. Show all insertion steps and circle your answer
reflecting the final AVL tree.

ii. Show the resulting Splay tree after inserting these keys: 2, 3, 5, 9, 6 in sequence, and
then searching Node 10. Show all insertion steps and circle your final Splay tree

answer.

iii. Analyze the advantages and disadvantages of each tree type (AVL and Splay) in
terms of insertion complexity, search efficiency, and balance maintenance.

QUESTION 3 [Course Goal 3: Sorting]

a) Consider as input the unsorted array: 10, 9, 11, 4, 7, 8, 5, 6, 3, 2; which is to be sorted in
ascending order using the Insertion Sort algorithm.

i. Show the status of the array after completing each iteration of the outer loop of the
algorithm, controlled by the index 7. That is, when i=0, i=1, i=2, etc.

ii. How many comparisons among the array elements were required for this input?
iii. Derive with explanation the worst-case time complexity in Big-O notation of insertion
sort.
b) Consider as input the unsorted array: 10, 9, 11, 4, 7, 8, 5, 6, 3, 2; which is to be sorted in
ascending order using Selection Sort algorithm.

i. Show the status of the array after completing each iteration of the outer loop controlled
by the index 7. That is, when i=0, i=1, i=2, etc.

ii. How many comparisons among the array elements were required for this input?

iii. Derive with explanation the worst-case time complexity in Big-O notation of selection
sort.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2024-03-01

¢) Consider as input the unsorted array: 79, 21, 15, 99, 88, 65, 75, 85, 76, 46, 84, 24 which is
to be sorted in ascending order using Quick Sort algorithm:

i

ii.

iii.

Draw the corresponding tree showing all left and right partitions, as well as middle
elements (pivots), from root to all leaves, when applying the division phase of the
algorithm. Each partition must be in the correct order (and position), derived by the
algorithm. For this example, use as pivot the element in the middle, applying “floor”
when odd partitions are encountered.

[7921[15[99[88 [6575 [85]76]46]84 |24]

[]

Explain what the partition function does in the context of QuickSort.

What is the worst-case time complexity of QuickSort, and under what circumstances
does it occur?

QUESTION 4 [Course Goal 4: Graphs].

a) Consider the following graph.

ii.
iil.

L

Draw the adjacency matrix.

Draw the list representation for the above diagraph.

Determine the worst case running time complexity in Big-O complexity (worst-case)
to find the in-degree of a node in the list-representation of the diagraph (use V
representing vertices and E representing edges, rather than n in your answer).
Motivate your answers with explanations.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2024-03-01

b) Consider the following graph:

i. The Graph is (True or False): A. Complete? B. Directed? C. Weighed? D. Connected?

ii. Specify the order of depth-first search visits starting from Node A in the above graph
(DFS traversal).

iii. What is the order of visited nodes using BFS algorithm (starting from Node A)?

c) Consider the following graph:

i. Use Dijkstra’s algorithm to determine the shortest path from Node 1 to each of the
other vertices in the next graph below. Show your Dijkstra table.

ii. What is the resulting path and its weight.

iii. Provide two real-world applications of Dijkstra algorithm.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2024-03-01

QUESTION 5 [Course Goal 5: Algorithm Design|

a) Consider the following graph.

i. What Floyd-Warshall algorithm is used for?
ii. Provide the initial matrix Do in Floyd-Warshall algorithm considering the above graph.
iii. Construct subsequent Matrices D1 to D4. and interpret the results.

b) In the following Huffman Coding related question, consider the space (sp) as a character and
motivate your answers with explanation.

i. Construct the tree developed by the Huffman Coding algorithm to create the prefix code
for the message: | CAN MAKE IT.

ii. Indicate the associated code for each character and the prefix code.
iii. Provide the total cost of such code.

¢) MaxFlow

In the context of network flow problems, consider a directed graph representing a network of
water pipes. Each edge in this graph has a capacity, which is the maximum amount of water
that can flow through that pipe per unit time. Your task is to determine the maximum total
amount of water that can flow from a source node (S) to a sink node (T) in the network.

i. Given the following directed graph with capacities on the edges, use the Ford-Fulkerson
algorithm to find the maximum flow from S to T. Show the flow in each step and the

residual capacities.

EXAMINATION OF ALGORITHMS AND DATA STRUCTURES, GIF
2024-03-01

ii. Calculate the total flow from S to T after applying the Ford-Fulkerson algorithm.

iii. Explain the concept of an augmenting path in the context of the Ford-Fulkerson
algorithm and its significance in determining the maximum flow.

