N/
A\

4

)

A

[
/ Ea \

\
-

: 1577 :
UNIVERSITY
OF SKOVDE

N

\

School of

WRITTEN EXAMINATION

Course: Concurrent Programming

Examination
Course code: IT404G Credits for written examination: 4.5
Date: 2024-02-23 Examination time: 5 hours

Examination responsible: Richard Senington
Teachers concerned: Birgitta Lindstrém

Aid at the exam/appendices

Other

Instructions Take a new sheet of paper for each teacher.

Take a new sheet of paper when starting a new question.

Write only on one side of the paper.

Write your name and personal ID No. on all pages you hand in.
Use page numbering.

Don’t use a red pen.

X X X X XK O O

Mark answered questions with a cross on the cover sheet.

Grade points

Examination results should be made public within 18 working days

Good luck!

Total number of pages

Parallella processer G1F, IT404G. 2024-01-10

Grading

There are five main questions in the written exam corresponding to the course objectives. Each main question

consists of a set of three sub-questions, which are graded pass or fail. To pass the exam, you need to pass at least

one sub-question for each of the main questions. The more sub-questions you pass, the higher your grade will be.

The detailed grading scheme is published in Canvas. For your convenience, each section lists the relevant L
examination criterion.

Main question 1
Examination criterion: Redogéra fér olika frégor som mdste hanteras i program med samtidigt exekverande
processer, inklusive tdvlan om resurser och émsesidig uteslutning

Sub-question 1a
Define the two properties liveness and absence of unnecessary delay in your own words. Make sure that your
answer is detailed enough to separate the two properties.

Sub-question 1b

Consider the following psudo-code for a simple lock between 2 threads. Will this work? If not, why not? Don’t
forget to motivate your answer with respect to all three safety properties, mutual exclusion, absence of deadlock
and absence of unnecessary delay.

bool flagl = false

bool flag2 = false

intturn=1 void unlock(){

void lock(bool myflag,bool itsflag, int me) flag=false;
myflag = true }
turn = me
while (itsflag and turn = me){ “1

skip // No-op

}

t

Sub-question 1c
Schedules are used to wake and suspend processes in concurrent programs. Describe unconditionally fair schedules

and weakly fair schedules, including the limits of each.

Parallella processer G1F, IT404G. 2024-01-10

Main question 2
Examination criterion: |dentifiera, beskriva och diskutera klassiska synkroniseringsproblem mellan parallella
processer sGsom synkronisering av Iésare och skrivare eller av producenter och konsumenter

Sub-question 2a
In the below pseudo code please answer the following questions; what is the classic problem, is mutual exclusion
ensured, is deadlock possible, is starvation possible? Please note that

e the function “find_channel_for” will map an integer to a channel, e.g. if you pass 1 it would return Chan1.
e that the function try_pop is not fully defined. If it cannot remove an element, please assume the code will
not give null-pointers but will act appropriately, though this sketch does not explicitly say so.

chan Chan1,Chan2,Chan3,Chan4;
int[] ww,rw,wa,ra;

Process 1{ Process 2{ Process 3{ Process 4{
Loop{ Loop{ Loopf Loop(
Chand.send([“r",1]) Chand.send([“r",2]) Chan4.send([“w",3]) Chand.recievie[t,p]
Chan1l.recieve() Chan2.recieve() Chan3.recieve() if t=="ew”{ wa.remove(p) }
// ACT // ACT // ACT elif r’{ ra.remove(p) }
Chand.send(["er”,1]) Chand.send([“er”,2]) Chan4.send([“ew”,3]) elif r'{ rw.add(p)}
// ACT // ACT // ACT elif t=="w" {ww.add(p)}
} } } if length(wa)>0{ // noop }
} } } elif length(ra)>0{
nr=try_pop(rw)
c=find_channel_for(nr)
ra.add(nr)
c.send(“go”)

elif length(ww)>0{
nw=try_pop(ww)
c=find_channel_for(nw)
wa.add(nw)
c.send(“go”)

elif length(rw)>0{
nr=try_pop(rw)
c=find_channel_for(nr)
ra.add(nr)
c.send(“go”)

}

}
}

Sub-question 2b
Describe the worker-manager classic problem model, including how the system can recover from mistakes or
breakdowns in the worker processes. Describe how you might implement this using binary semaphores.

Parallella processer G1F, IT404G. 2024-01-10

Sub-question 2c

Process O

Open=[1,2,3]
Tasks=// stream of tasks
Loop{
if length(open)>0{
next=o0pen.pop(0)
nextTask=tasks.pop(0)
c=lookup_channel(next)
c.send(nextTask)
}
else{
cO.recieve([result,i]
open.add(i)
}
}

Process 1

Loop{
cl.recieve(x)
y=// compute on x
cO.send([y,1])

Process 2

Loop{
c2.recieve(x)
y=// computeon x
cO0.send([y,2])

}

Process 3

Loop{
c3.recieve(x)
y=// compute on x
c0.send([y,31)

}

Consider the system of processes seen in the diagram above. What classic problem is this? What architectural
pattern is this following? What is the purpose of the messages sent on channel c0?

Parallella processer G1F, IT404G. 2024-01-10

Main question 3
Examination criterion: Beskriva for- och nackdelar med olika tekniker fér att I6sa synkroniseringsproblem, inklusive
semaforer, monitorer och tekniker fér meddelandeéverféring

Sub-question 3a
Monitors are similar to Conditional Critical Regions. Please describe each. Compare and contrast the two
mechanisms with respect to support for mutual exclusion and efficiency.

Sub-question 3b

Message passing can be either asynchronous or synchronous. Describe each of these. Compare and contrast the
two mechanisms with respect to support for mutual exclusion and efficiency. Describe with examples where you
could use each.

Sub-question 3c
Compare and contrast remote procedures calls (RPC) and rendezvous methods of concurrent programming in
distributed systems with respect to support for mutual exclusion and efficiency. Where could you use each?

Parallella processer G1F, IT404G. 2024-01-10

Main question 4

Examination criterion: Anvénda grundldggande tekniker sésom semaforer och meddelandeéverféring fér att losa
synkronisering och kommunikation i program med parallella processer

Sub-question 4a

There is a turn based computer game, and it can be played by many players at the same time. The programmers
have used a channel abstraction to model the connections between the player processes and a peer-peer based
architecture.

Draw a diagram of the processes and the channels linking them and then write some pseudo code for each process
to indicate how they will proceed. Assume there are 3 players!

Sub-question 4b

What follows is a diagram of a set of processing nodes. Synchronization will be achieved using semaphores. Please
state the number of semaphores required, their initial states and write pseudocode for each process. Please note
that the arrows mean that the later process should not begin until ALL the earlier connected processes have
completed.

Sub-question 4c

A programmer has found an instance of the dining philosophers classic problem in an application they are writing.
They have decided to use a monitor as a controller for the processes. Implement a monitor for this controller, with
2 methods; one to take a fork (indicated by an integer parameter) and one to release a fork (indicated by an integer
parameter). You may assume 5 “philosopher processes are active and so there are 5 forks. The system will need 1
condition variable for each fork.

Parallella processer G1F, IT404G. 2024-01-10

Main question 5

Examination criterion: Modellera och verifiera egenskaper hos program med parallella processer, inklusive
progression, franvaro av Idsning och émsesidig uteslutning

c1 c2
Controller
. . Entrytlorth!
FromHorth==0 & && FromMorth<3
Goingllorth Goingllorth
SouthSide © . HonthSide SouthSide ‘ NorthSide
GoingSouth GoingSouth
Exit I Ex
c3 c4 c5
E Entryt Entryllol
Goingtlorth GoingHorth
SouthSide SouthSide OrethSide (1 sounside @ ionhSide
GoingSouth GoingSouth
ExitSouth! E h! E ht

Consider the above model, which model a solution to the old bridge problem. It has a controller process with two
local variables, FromNorth and FromSouth. Both of these are initiated to 0. The model also has five instances of car
processes. Cars in state GoingNorth or GoingSouth are on the old bridge. Note that the system uses the inbuilt
mechanisms ! and ? for synchronizations (i.e., not the emulated semaphore or asynchronous message passing
mechanisms from assignment). Hence, two processes will synchronize directly with each other on e.g., channel
ExitNorth in the above figure.

Sub-guestion 5a
Explain the role of the controller and describe what it does in detail.

Sub-question 5b

Formulate an uppaal query to verify that if there can be at most three cars on the bridge at the same time.

Sub-question 5c¢
Formulate an uppaal query to verify that if there are cars on the bridge going south, there cannot be cars on the
bridge going in the opposite direction.

